Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Olivia Viessmann

DPhil Student

I am a PhD student in the Physics Group at FMRIB. My research focuses on MRI methods that can be used to assess cerebrovascular properties.

As part of my project I worked on intracranial vessel-wall imaging to depict the structure of larger cerebral arteries, such as the middle cerebral artery (MCA). Geometrical changes, plaque accumulation and occlusion of the MCA and its early perforators is a common finding in certain types of stroke and small vessel disease. MRI can be used to study the vessel wall non-invasively in humans. Imaging the vessel wall is challenging due to its sub-milimeter size.  In addition contrast is reduced by disturbing signal from blood and cerebrospinal fluid in the vicinity of the wall. Using the velocity spoiling effect of a variable flip angle turbo-spin echo sequence (SPACE) and the slow-flow crushing effect of a DANTE preparation, suppression of blood and CSF signal can be achieved while still preserving enough signal from the vessel wall itself. This work is carried out on FMRIB's 7 Tesla human scanner.  

In my current work I am acquiring functional MRI (fMRI) data at rest (i.e. the subject is not performing any task, but is awake). I am particularly interested in ultra-fast acquisition techniques that allow to temporally resolve signal fluctuations that are caused by physiological fluctuations, especially the cardiac cycle. My work looks into strategies to use the MRI signal fluctuations to derive properties of the cerebral vasculature, such as vessel stiffness or the lag of the cardiac pulse wave into the surrounding tissue. 


Recent publications

More publications