Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects.

    24 October 2018

    Variability in opioid analgesia has been attributed to many factors. For example, genetic variability of the μ-opioid receptor (MOR)-encoding gene introduces variability in MOR function and endogenous opioid neurotransmission. Emerging evidence suggests that personality trait related to the experience of reward is linked to endogenous opioid neurotransmission. We hypothesized that opioid-induced behavioral analgesia would be predicted by the trait reward responsiveness (RWR) and the response of the brain reward circuitry to noxious stimuli at baseline before opioid administration. In healthy volunteers using functional magnetic resonance imaging and the μ-opioid agonist remifentanil, we found that the magnitude of behavioral opioid analgesia is positively correlated with the trait RWR and predicted by the neuronal response to painful noxious stimuli before infusion in key structures of the reward circuitry, such as the orbitofrontal cortex, nucleus accumbens, and the ventral tegmental area. These findings highlight the role of the brain reward circuitry in the expression of behavioral opioid analgesia. We also show a positive correlation between behavioral opioid analgesia and opioid-induced suppression of neuronal responses to noxious stimuli in key structures of the descending pain modulatory system (amygdala, periaqueductal gray, and rostral-ventromedial medulla), as well as the hippocampus. Further, these activity changes were predicted by the preinfusion period neuronal response to noxious stimuli within the ventral tegmentum. These results support the notion of future imaging-based subject-stratification paradigms that can guide therapeutic decisions.

  • Neural correlates of an injury-free model of central sensitization induced by opioid withdrawal in humans.

    24 October 2018

    Preclinical evidence suggests that opioid withdrawal induces central sensitization (CS) that is maintained by supraspinal contributions from the descending pain modulatory system (DPMS). Here, in healthy human subjects we use functional magnetic resonance imaging to study the supraspinal activity during the withdrawal period of the opioid remifentanil. We used a crossover design and thermal stimuli on uninjured skin to demonstrate opioid withdrawal-induced hyperalgesia (OIH) without a CS-inducing peripheral stimulus. Saline was used in the control arm to account for effects of time. OIH in this injury-free model was observed in a subset of the healthy subjects (responders). Only in these subjects did opioid infusion and withdrawal induce a rise in activity in the mesencephalic-pontine reticular formation (MPRF), an area of the DPMS that has been previously shown to be involved in states of CS in humans, which became significant during the withdrawal phase compared with nonresponders. Paradoxically, this opioid withdrawal-induced rise in MPRF activity shows a significant negative correlation with the behavioral OIH score indicating a predominant inhibitory role of the MPRF in the responders. These data illustrate that in susceptible individuals central mechanisms appear to regulate the expression of OIH in humans in the absence of tissue injury, which might have relevance for functional pain syndromes where a peripheral origin for the pain is difficult to identify.

  • Is pH a biochemical marker of IQ?

    24 October 2018

    We have measured intracellular brain pH in vivo in 42 boys and found a significant correlation between this biochemical parameter and samples of intelligent behaviour. To the best of our knowledge this is the first reported relation between a biochemical marker which is within normal physiological values and intellectual ability. pH is one of the most accurate parameters that can be measured by 31P magnetic resonance spectroscopy and it reflects sensitively cellular ionic status and metabolic activity. The observed correlation, although not implying a causal relation, raises the possibility that intelligent behaviour may be influenced by the ionic status of brain tissue, or vice versa.

  • Exercise metabolism in Duchenne muscular dystrophy: a biochemical and [31P]-nuclear magnetic resonance study of mdx mice.

    24 October 2018

    Intracellular pH, ratios of phosphocreatine (PCr) to ATP and PCr to inorganic phosphate (Pi) as well as isometric tension were measured during 1 Hz sciatic nerve stimulation and during recovery in the calf muscles of mdx (a model of Duchenne muscular dystrophy) and control mice. Tension did not decline significantly in either strain. The ratio of PCr/(PCr + Pi) was significantly reduced in mdx as against control muscle during exercise and recovery, but the ratio of PCr/ATP and the half-time for PCr recovery were similar in both strains. A reduction in the maximal activities of succinate dehydrogenase and succinate-cytochrome c reductase suggests that mitochondrial metabolism may be impaired. The similarity in PCr recovery times suggests that the muscle has adapted, making any impairment of oxidative metabolism negligible in the intact system. The rate of pH recovery is prolonged in mdx muscle and provides strong evidence for a decline in the capacity of dystrophic muscle to extrude proton equivalents. These data are compared with a previous study which used 10 Hz stimulation and also observed a slow pH recovery. The slow pH recovery could be explained by an elevation in intracellular sodium.

  • Brain abnormalities in Duchenne muscular dystrophy: phosphorus-31 magnetic resonance spectroscopy and neuropsychological study.

    24 October 2018

    Duchenne muscular dystrophy (DMD) is one of a range of muscular dystrophies caused by abnormalities of the short arm of the X chromosome (Xp21), which often cause mental retardation in addition to progressive muscular weakness. Normal dystrophin expression is lacking in both skeletal muscle and brain of affected subjects. Phosphorus-31 magnetic resonance spectroscopy has shown several abnormalities in skeletal muscle in DMD. We looked for similar abnormalities in brain in patients with DMD and related the findings to neuropsychological test results. We studied by magnetic resonance spectroscopy 19 boys (aged 76-167 months) diagnosed as having DMD and 19 control boys of similar age (87-135 months). Intelligence quotient (IQ) was assessed with the Wechsler Intelligence Scale for children. The DMD patients had significantly higher values than the controls in the brain ratios of inorganic phosphate to adenosine triphosphate (mean 0.53 [SD 0.21] vs 0.36 [0.09], p = 0.003), to phosphomonoesters (0.40 [0.07] vs 0.29 [0.07], p = 0.0001), and to phosphocreatine (0.44 [0.10] vs 0.37 [0.08], p = 0.02). There were significant differences between the DMD patients and the controls in full-scale IQ (76 [16] vs 101 [16], p = 0.0001), performance IQ (78 [17] vs 94 [14], p = 0.003), and verbal IQ (78 [17] vs 106 [17], p = 0.0001). These altered metabolite ratios parallel the findings in dystrophic muscle and suggest bioenergetic similarities in tissues that lack dystrophin.

  • Dissociating pain from its anticipation in the human brain.

    24 October 2018

    The experience of pain is subjectively different from the fear and anxiety caused by threats of pain. Functional magnetic resonance imaging in healthy humans was applied to dissociate neural activation patterns associated with acute pain and its anticipation. Expectation of pain activated sites within the medial frontal lobe, insular cortex, and cerebellum distinct from, but close to, locations mediating pain experience itself. Anticipation of pain can in its own right cause mood changes and behavioral adaptations that exacerbate the suffering experienced by chronic pain patients. Selective manipulations of activity at these sites may offer therapeutic possibilities for treating chronic pain.

  • SnapShot: Pain perception.

    24 October 2018

  • The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil.

    24 October 2018

    Evidence from behavioral and self-reported data suggests that the patients' beliefs and expectations can shape both therapeutic and adverse effects of any given drug. We investigated how divergent expectancies alter the analgesic efficacy of a potent opioid in healthy volunteers by using brain imaging. The effect of a fixed concentration of the μ-opioid agonist remifentanil on constant heat pain was assessed under three experimental conditions using a within-subject design: with no expectation of analgesia, with expectancy of a positive analgesic effect, and with negative expectancy of analgesia (that is, expectation of hyperalgesia or exacerbation of pain). We used functional magnetic resonance imaging to record brain activity to corroborate the effects of expectations on the analgesic efficacy of the opioid and to elucidate the underlying neural mechanisms. Positive treatment expectancy substantially enhanced (doubled) the analgesic benefit of remifentanil. In contrast, negative treatment expectancy abolished remifentanil analgesia. These subjective effects were substantiated by significant changes in the neural activity in brain regions involved with the coding of pain intensity. The positive expectancy effects were associated with activity in the endogenous pain modulatory system, and the negative expectancy effects with activity in the hippocampus. On the basis of subjective and objective evidence, we contend that an individual's expectation of a drug's effect critically influences its therapeutic efficacy and that regulatory brain mechanisms differ as a function of expectancy. We propose that it may be necessary to integrate patients' beliefs and expectations into drug treatment regimes alongside traditional considerations in order to optimize treatment outcomes.

  • Exacerbation of pain by anxiety is associated with activity in a hippocampal network.

    24 October 2018

    It is common clinical experience that anxiety about pain can exacerbate the pain sensation. Using event-related functional magnetic resonance imaging (FMRI), we compared activation responses to noxious thermal stimulation while perceived pain intensity was manipulated by changes in either physical intensity or induced anxiety. One visual signal, which reliably predicted noxious stimulation of moderate intensity, came to evoke low anxiety about the impending pain. Another visual signal was followed by the same, moderate-intensity stimulation on most of the trials, but occasionally by discriminably stronger noxious stimuli, and came to evoke higher anxiety. We found that the entorhinal cortex of the hippocampal formation responded differentially to identical noxious stimuli, dependent on whether the perceived pain intensity was enhanced by pain-relevant anxiety. During this emotional pain modulation, entorhinal responses predicted activity in closely connected, affective (perigenual cingulate), and intensity coding (mid-insula) areas. Our finding suggests that accurate preparatory information during medical and dental procedures alleviates pain by disengaging the hippocampus. It supports the proposal that during anxiety, the hippocampal formation amplifies aversive events to prime behavioral responses that are adaptive to the worst possible outcome.

  • Decoding the perception of pain from fMRI using multivariate pattern analysis.

    24 October 2018

    Pain is known to comprise sensory, cognitive, and affective aspects. Despite numerous previous fMRI studies, however, it remains open which spatial distribution of activity is sufficient to encode whether a stimulus is perceived as painful or not. In this study, we analyzed fMRI data from a perceptual decision-making task in which participants were exposed to near-threshold laser pulses. Using multivariate analyses on different spatial scales, we investigated the predictive capacity of fMRI data for decoding whether a stimulus had been perceived as painful. Our analysis yielded a rank order of brain regions: during pain anticipation, activity in the periaqueductal gray (PAG) and orbitofrontal cortex (OFC) afforded the most accurate trial-by-trial discrimination between painful and non-painful experiences; whereas during the actual stimulation, primary and secondary somatosensory cortex, anterior insula, dorsolateral and ventrolateral prefrontal cortex, and OFC were most discriminative. The most accurate prediction of pain perception from the stimulation period, however, was enabled by the combined activity in pain regions commonly referred to as the 'pain matrix'. Our results demonstrate that the neural representation of (near-threshold) pain is spatially distributed and can be best described at an intermediate spatial scale. In addition to its utility in establishing structure-function mappings, our approach affords trial-by-trial predictions and thus represents a step towards the goal of establishing an objective neuronal marker of pain perception.