Search results
Found 22688 matches for
Fatigue predicts quality of life after leucine‐rich glioma‐inactivated 1‐antibody encephalitis
AbstractPatient‐reported quality‐of‐life (QoL) and carer impacts are not reported after leucine‐rich glioma‐inactivated 1‐antibody encephalitis (LGI1‐Ab‐E). From 60 patients, 85% (51 out of 60) showed one abnormal score across QoL assessments and 11 multimodal validated questionnaires. Compared to the premorbid state, QoL significantly deteriorated (p < 0.001) and, at a median of 41 months, fatigue was its most important predictor (p = 0.025). In total, 51% (26 out of 51) of carers reported significant burden. An abbreviated five‐item battery explained most variance in QoL. Wide‐ranging impacts post‐LGI1‐Ab‐E include decreased QoL and high caregiver strain. We identify a rapid method to capture QoL in routine clinic or clinical trial settings.
LGI1-antibody encephalitis: how to approach this highly treatable dementia mimic in memory and mental health services
Leucine-rich glioma-inactivated 1-antibody-encephalitis is a treatable and potentially reversible cause of cognitive and psychiatric presentations, and may mimic cognitive decline, rapidly progressive dementia and complex psychosis in older patients. This aetiology is of immediate relevance given the alternative treatment pathway required, compared with other conditions presenting with cognitive deficits.
Magnetic Resonance Imaging Characteristics of LGI1-Antibody and CASPR2-Antibody Encephalitis
ImportanceRapid and accurate diagnosis of autoimmune encephalitis encourages prompt initiation of immunotherapy toward improved patient outcomes. However, clinical features alone may not sufficiently narrow the differential diagnosis, and awaiting autoantibody results can delay immunotherapy.ObjectiveTo identify simple magnetic resonance imaging (MRI) characteristics that accurately distinguish 2 common forms of autoimmune encephalitis, LGI1- and CASPR2-antibody encephalitis (LGI1/CASPR2-Ab-E), from 2 major differential diagnoses, viral encephalitis (VE) and Creutzfeldt-Jakob disease (CJD).Design, Setting, and ParticipantsThis cross-sectional study involved a retrospective, blinded analysis of the first available brain MRIs (taken 2000-2022) from 192 patients at Oxford University Hospitals in the UK and Mayo Clinic in the US. These patients had LGI1/CASPR2-Ab-E, VE, or CJD as evaluated by 2 neuroradiologists (discovery cohort; n = 87); findings were validated in an independent cohort by 3 neurologists (n = 105). Groups were statistically compared with contingency tables. Data were analyzed in 2023.Main Outcomes and MeasuresMRI findings including T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensities, swelling or volume loss, presence of gadolinium contrast enhancement, and diffusion-weighted imaging changes. Correlations with clinical features.ResultsAmong 192 participants with MRIs reviewed, 71 were female (37%) and 121 were male (63%); the median age was 66 years (range, 19-92 years). By comparison with VE and CJD, in LGI1/CASPR2-Ab-E, T2 and/or FLAIR hyperintensities were less likely to extend outside the temporal lobe (3/42 patients [7%] vs 17/18 patients [94%] with VE; P &lt; .001, and 3/4 patients [75%] with CJD; P = .005), less frequently exhibited swelling (12/55 [22%] with LGI1/CASPR2-Ab-E vs 13/22 [59%] with VE; P = .003), and showed no diffusion restriction (0 patients vs 16/22 [73%] with VE and 8/10 [80%] with CJD; both P &lt; .001) and rare contrast enhancement (1/20 [5%] vs 7/17 [41%] with VE; P = .01). These findings were validated in an independent cohort and generated an area under the curve of 0.97, sensitivity of 90%, and specificity of 95% among cases with T2/FLAIR hyperintensity in the hippocampus and/or amygdala.Conclusions and RelevanceIn this study, T2 and/or FLAIR hyperintensities confined to the temporal lobes, without diffusion restriction or contrast enhancement, robustly distinguished LGI1/CASPR2-Ab-E from key differential diagnoses. These observations should assist clinical decision-making toward expediting immunotherapy. Their generalizability to other forms of autoimmune encephalitis and VE should be examined in future studies.
Ultrahigh frequencies of peripherally matured LGI1- and CASPR2-reactive B cells characterize the cerebrospinal fluid in autoimmune encephalitis
Intrathecal synthesis of central nervous system (CNS)-reactive autoantibodies is observed across patients with autoimmune encephalitis (AE), who show multiple residual neurobehavioral deficits and relapses despite immunotherapies. We leveraged two common forms of AE, mediated by leucine-rich glioma inactivated-1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies, as human models to comprehensively reconstruct and profile cerebrospinal fluid (CSF) B cell receptor (BCR) characteristics. We hypothesized that the resultant observations would both inform the observed therapeutic gap and determine the contribution of intrathecal maturation to pathogenic B cell lineages. From the CSF of three patients, 381 cognate-paired IgG BCRs were isolated by cell sorting and scRNA-seq, and 166 expressed as monoclonal antibodies (mAbs). Sixty-two percent of mAbs from singleton BCRs reacted with either LGI1 or CASPR2 and, strikingly, this rose to 100% of cells in clonal groups with ≥4 members. These autoantigen-reactivities were more concentrated within antibody-secreting cells (ASCs) versus B cells ( P < 0.0001), and both these cell types were more differentiated than LGI1- and CASPR2-unreactive counterparts. Despite greater differentiation, autoantigen-reactive cells had acquired few mutations intrathecally and showed minimal variation in autoantigen affinities within clonal expansions. Also, limited CSF T cell receptor clonality was observed. In contrast, a comparison of germline-encoded BCRs versus the founder intrathecal clone revealed marked gains in both affinity and mutational distances ( P = 0.004 and P < 0.0001, respectively). Taken together, in patients with LGI1 and CASPR2 antibody encephalitis, our results identify CSF as a compartment with a remarkably high frequency of clonally expanded autoantigen-reactive ASCs whose BCR maturity appears dominantly acquired outside the CNS.
The contributions of vascular comorbidities on self-reported functional issues in persons with multiple sclerosis.
PURPOSE: This study aimed to evaluate 1) whether having a vascular comorbidity (i.e., hypertension, hyperlipidemia, heart disease, and diabetes) was associated with self-reported issues with functional activities among persons with multiple sclerosis (MS) and 2) if certain contributing factors (i.e., disability, depression, and fatigue) might explain the observed relationships. MATERIALS AND METHODS: Participants (n = 263) completed the Functional Status Index (FSI), which assessed five domains: gross mobility, hand activities, personal care, home chores, and social/role activities. After bivariate analyses, individual linear regressions were conducted for each FSI domain, controlling for demographics. Follow-up mediation analyses were done for each of the three mediators. RESULTS: Participants with vascular comorbidities endorsed more issues on all five domains, with the demographic-adjusted associations with gross mobility (b = 0.34, p = 0.002), hand activities (b = 0.15, p = 0.006), home chores (b = 0.44, p = 0.003), and social/role activities (b = 0.32, p = 0.024) remaining significant. Disability fully mediated the effects of vascular comorbidities on these domains, with partial and full mediations observed with depression and fatigue. Diabetes emerged as a significant individual comorbidity in several models. CONCLUSIONS: Vascular comorbidities, diabetes in particular, are associated with persons with MS endorsing worse ratings on functional outcomes, with disability, depression, and fatigue explaining these associations.
Microstructural Properties of the Cerebellar Peduncles in Children With Developmental Language Disorder
Abstract Children with developmental language disorder (DLD) struggle to learn their native language for no apparent reason. While research on the neurobiological underpinnings of the disorder has focused on the role of corticostriatal systems, little is known about the role of the cerebellum in DLD. Corticocerebellar circuits might be involved in the disorder as they contribute to complex sensorimotor skill learning, including the acquisition of spoken language. Here, we used diffusion-weighted imaging data from 77 typically developing and 54 children with DLD and performed probabilistic tractography to identify the cerebellum’s white matter tracts: the inferior, middle, and superior cerebellar peduncles. Children with DLD showed lower fractional anisotropy (FA) in the inferior cerebellar peduncles (ICP), fiber tracts that carry motor and sensory input via the inferior olive to the cerebellum. Lower FA in DLD was driven by lower axial diffusivity. Probing this further with more sophisticated modeling of diffusion data, we found higher orientation dispersion but no difference in neurite density in the ICP of children with DLD. Reduced FA is therefore unlikely to be reflecting microstructural differences in myelination, rather the organization of axons in these pathways is disrupted. ICP microstructure was not associated with language or motor coordination performance in our sample. We also found no differences in the middle and superior peduncles, the main pathways connecting the cerebellum with the cortex. To conclude, it is not corticocerebellar but atypical olivocerebellar white matter connections that characterize DLD and suggest the involvement of the olivocerebellar system in speech and language acquisition and development.
Lipid-mediated resolution of inflammation and survival in amyotrophic lateral sclerosis
Abstract Neuroinflammation impacts on the progression of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Specialized pro-resolving mediators trigger the resolution of inflammation. We investigate the specialized pro-resolving mediator blood profile and their receptors’ expression in peripheral blood mononuclear cells in relation to survival in ALS. People living with ALS (pwALS) were stratified based on bulbar versus limb onset and on key progression metrics using a latent class model, to separate faster progressing from slower progressing ALS. Specialized pro-resolving mediator blood concentrations were measured at baseline and in one additional visit in 20 pwALS and 10 non-neurological controls (Cohort 1). Flow cytometry was used to study the GPR32 and GPR18 resolvin receptors’ expression in peripheral blood mononuclear cells from 40 pwALS and 20 non-neurological controls (Cohort 2) at baseline and in two additional visits in 17 pwALS. Survival analysis was performed using Cox proportional hazards models, including known clinical predictors and GPR32 and GPR18 mononuclear cell expression. Differential expression and linear discriminant analyses showed that plasma resolvins were able to distinguish phenotypic variants of ALS from non-neurological controls. RvE3 was elevated in blood from pwALS, whilst RvD1, RvE3, RvT4 and RvD1n-3 DPA were upregulated in A-S and RvD2 in A-F. Compared to non-neurological controls, GPR32 was upregulated in monocytes expressing the active inflammation-suppressing CD11b+ integrin from fast-progressing pwALS, including those with bulbar onset disease (P < 0.0024), whilst GPR32 and GPR18 were downregulated in most B and T cell subtypes. Only GPR18 was upregulated in naïve double positive Tregs, memory cytotoxic Tregs, senescent late memory B cells and late senescent CD8+ T cells from pwALS compared to non-neurological controls (P < 0.0431). Higher GPR32 and GPR18 median expression in blood mononuclear cells was associated with longer survival, with GPR32 expression in classical monocytes (hazard ratio: 0.11, P = 0.003) and unswitched memory B cells (hazard ratio: 0.44, P = 0.008) showing the most significant association, along with known clinical predictors. Low levels of resolvins and downregulation of their membrane receptors in blood mononuclear cells are linked to a faster progression of ALS. Higher mononuclear cell expression of resolvin receptors is a predictor of longer survival. These findings suggest a lipid-mediated neuroprotective response that could be harnessed to develop novel therapeutic strategies and biomarkers for ALS.
Rethinking phase 2 trials in amyotrophic lateral sclerosis
Abstract There is a long history in amyotrophic lateral sclerosis (ALS) of promoting therapies based on Phase 2 data, which then fail in Phase 3 trials. Experience suggests that studies of 6 months in duration are too short, especially with function-based outcome measures. Multiplicity poses a serious threat to data interpretation, and strategies to impute missing data may not be appropriate for ALS where progression is always expected. Emerging surrogate markers of clinical benefit such as reduction of neurofilament light chain levels may be better suited to Phase 2 go/no-go decisions. Over-interpretation of Phase 2 data, and overly optimistic communication of exploratory analyses must be avoided to ensure optimal prioritisation for the investment needed for definitive Phase 3 trials and to minimize the harm of false hope for people living with ALS. Delivering on advances in understanding of the neurobiology of ALS requires urgent attention to Phase 2 design and implementation.
Epi-microRNA mediated metabolic reprogramming counteracts hypoxia to preserve affinity maturation.
To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centers (GCs). Among these, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by utilizing energy provided by oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Mechanistically, miR-155 regulates H3K36me2 levels in hypoxic conditions by directly repressing the histone lysine demethylase, Kdm2a, whose expression increases in response to hypoxia. The miR-155-Kdm2a interaction is crucial for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia, thereby preventing excessive production of reactive oxygen species and subsequent apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity GC-B cells, ensuring their expansion and consequently affinity maturation.
Concentric Ring Trajectory Sampling With k-Space Reordering Enables Assessment of Tissue-Specific T1 and T2 Relaxation for 2H-Labeled Substrates in the Human Brain at 7 T.
Deuterium metabolic imaging (DMI) is an emerging Magnetic Resonance technique providing valuable insight into the dynamics of cellular glucose (Glc) metabolism of the human brain in vivo using deuterium-labeled (2H) glucose as non-invasive tracer. Reliable concentration estimation of 2H-Glc and downstream synthesized neurotransmitters glutamate + glutamine (Glx) requires accurate knowledge of relaxation times, but so far tissue-specific T1 and T2 relaxation times (e.g., in gray and white matter) have not been determined. Such measurements are time-consuming and particularly challenging in the presence of dynamically changing metabolite levels (e.g. 2H Glc and 2H Glx). This study aimed to assess T1 and T2 relaxation times of deuterated resonances, i.e., water, Glc and Glx in human gray and white matter using inversion recovery and Hahn spin-echo 2H MRSI (magnetic resonance spectroscopic imaging), respectively, with non-Cartesian concentric ring trajectory readout (CRT) including specific k-space reordering at 7 T. The sequence was validated using phantom measurements and all results were compared to unlocalized acquisitions. Thirteen healthy volunteers participated in the study, with 10 of them scanned ~90 min after oral administration of 0.8 g/kg [6,6'-2H]-glucose. Significantly different T1 and T2 relaxation was observed between GM and WM for 2H water (T1 GM/WM/unlocalized = 358 ± 21/328 ± 12/335 m ± 6 ms, p = 0.01) and 2H Glx (T2 GM/WM/unlocalized = 37 ± 2/35 ± 2/33 ± 3 ms, p = 0.02), respectively, consistent with unlocalized acquisitions. No significant regional differences were found for 2H water (T2 GM/WM/unlocalized = 36 ± 2/34 ± 2/31 ± 2 ms, p = 0.08), 2H Glc (T1 GM/WM/unlocalized = 70 ± 5/73 ± 4/80 ± 5 ms, p = 0.13; T2 GM/WM/unlocalized = 36 ± 1/34 ± 2/34 ± 2 ms, p = 0.24) and Glx (T1 GM/WM/unlocalized = 172 ± 15/172 ± 12/165 ± 11 ms, p = 1.00). Knowledge of tissue-specific relaxation times can enhance the accuracy of concentration estimation and metabolic flux rates in future studies, potentially improving our understanding of various brain diseases such as cancer, neurodegenerative diseases or diabetes, which are often linked to impaired glucose metabolism.
Acute seizure risk in patients with encephalitis: development and validation of clinical prediction models from two independent prospective multicentre cohorts
ObjectiveIn patients with encephalitis, the development of acute symptomatic seizures is highly variable, but when present is associated with a worse outcome. We aimed to determine the factors associated with seizures in encephalitis and develop a clinical prediction model.MethodsWe analysed 203 patients from 24 English hospitals (2005–2008) (Cohort 1). Outcome measures were seizures prior to and during admission, inpatient seizures and status epilepticus. A binary logistic regression risk model was converted to a clinical score and independently validated on an additional 233 patients from 31 UK hospitals (2013–2016) (Cohort 2).ResultsIn Cohort 1, 121 (60%) patients had a seizure including 103 (51%) with inpatient seizures. Admission Glasgow Coma Scale (GCS) ≤8/15 was predictive of subsequent inpatient seizures (OR (95% CI) 5.55 (2.10 to 14.64), p<0.001), including in those without a history of prior seizures at presentation (OR 6.57 (95% CI 1.37 to 31.5), p=0.025).A clinical model of overall seizure risk identified admission GCS along with aetiology (autoantibody-associated OR 11.99 (95% CI 2.09 to 68.86) and Herpes simplex virus 3.58 (95% CI 1.06 to 12.12)) (area under receiver operating characteristics curve (AUROC) =0.75 (95% CI 0.701 to 0.848), p<0.001). The same model was externally validated in Cohort 2 (AUROC=0.744 (95% CI 0.677 to 0.811), p<0.001). A clinical scoring system for stratifying inpatient seizure risk by decile demonstrated good discrimination using variables available on admission; age, GCS and fever (AUROC=0.716 (95% CI 0.634 to 0.798), p<0.001) and once probable aetiology established (AUROC=0.761 (95% CI 0.6840.839), p<0.001).ConclusionAge, GCS, fever and aetiology can effectively stratify acute seizure risk in patients with encephalitis. These findings can support the development of targeted interventions and aid clinical trial design for antiseizure medication prophylaxis.
Quantification of Fundus Autofluorescence Features in a Molecularly Characterized Cohort of >3500 Patients with Inherited Retinal Disease from the United Kingdom.
PURPOSE: To quantify relevant fundus autofluorescence (FAF) features cross-sectionally and longitudinally in a large cohort of patients with inherited retinal diseases (IRDs). DESIGN: Retrospective study of imaging data. PARTICIPANTS: Patients with a clinical and molecularly confirmed diagnosis of IRD who have undergone 55° FAF imaging at Moorfields Eye Hospital (MEH) and the Royal Liverpool Hospital between 2004 and 2019. METHODS: Five FAF features of interest were defined: vessels, optic disc, perimacular ring of increased signal (ring), relative hypo-autofluorescence (hypo-AF), and hyper-autofluorescence (hyper-AF). Features were manually annotated by 6 graders in a subset of patients based on a defined grading protocol to produce segmentation masks to train an artificial intelligence model, AIRDetect, which was then applied to the entire imaging data set. MAIN OUTCOME MEASURES: Quantitative FAF features, including area and vessel metrics, were analyzed cross-sectionally by gene and age, and longitudinally. AIRDetect feature segmentation and detection were validated with Dice score and precision/recall, respectively. RESULTS: A total of 45 749 FAF images from 3606 patients with IRD from MEH covering 170 genes were automatically segmented using AIRDetect. Model-grader Dice scores for the disc, hypo-AF, hyper-AF, ring, and vessels were, respectively, 0.86, 0.72, 0.69, 0.68, and 0.65. Across patients at presentation, the 5 genes with the largest hypo-AF areas were CHM, ABCC6, RDH12, ABCA4, and RPE65, with mean per-patient areas of 43.72, 29.57, 20.07, 19.65, and 16.92 mm2, respectively. The 5 genes with the largest hyper-AF areas were BEST1, CDH23, NR2E3, MYO7A, and RDH12, with mean areas of 0.50, 047, 0.44, 0.38, and 0.33 mm2, respectively. The 5 genes with the largest ring areas were NR2E3, CDH23, CRX, EYS, and PDE6B, with mean areas of 3.60, 2.90, 2.89, 2.56, and 2.20 mm2, respectively. Vessel density was found to be highest in EFEMP1, BEST1, TIMP3, RS1, and PRPH2 (11.0%, 10.4%, 10.1%, 10.1%, 9.2%) and was lower in retinitis pigmentosa (RP) and Leber congenital amaurosis genes. Longitudinal analysis of decreasing ring area in 4 RP genes (RPGR, USH2A, RHO, and EYS) found EYS to be the fastest progressor at -0.178 mm2/year. CONCLUSIONS: We have conducted the first large-scale cross-sectional and longitudinal quantitative analysis of FAF features across a diverse range of IRDs using a novel AI approach. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Occlusive retinal vasculitis associated with intravitreal Faricimab injections.
PURPOSE: We describe a case of occlusive vasculitis associated with intravitreal Faricimab (Vabysmo) injections. METHODS: A retrospective case report. RESULTS: A 52-year old man treated with monthly Faricimab injections for diabetic macula oedema presented with sudden reduced vision, new retinal hemorrhages, significant retinal vascular occlusions and ischemia. After screening for differential diagnoses was unremarkable, the patient was treated with oral and intravitreal steroid therapy under which the occlusive vasculitis was stabilized. CONCLUSION: Occlusive vasculitis, though rare, is a potential complication of Faricimab therapy. Comprehensive reporting and large-scale analyses are essential to better understand and manage this adverse event.