Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Serotonin, Amygdala and Fear: Assembling the Puzzle.

    17 November 2017

    The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5-HT modulation of fear learning via action on amygdala circuits. Such advancement could pave the way for a deeper understanding of 5-HT in emotional behavior in both health and disease.

  • Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model.

    17 November 2017

    The function of adult neurogenesis in the rodent brain remains unclear. Ablation of adult born neurons has yielded conflicting results about emotional and cognitive impairments. One hypothesis is that adult neurogenesis in the hippocampus enables spatial pattern separation, allowing animals to distinguish between similar stimuli. We investigated whether spatial pattern separation and other putative hippocampal functions of adult neurogenesis were altered in a novel genetic model of neurogenesis ablation in the rat. In rats engineered to express thymidine kinase (TK) from a promoter of the rat glial fibrillary acidic protein (GFAP), ganciclovir treatment reduced new neurons by 98%. GFAP-TK rats showed no significant difference from controls in spatial pattern separation on the radial maze, spatial learning in the water maze, contextual or cued fear conditioning. Meta-analysis of all published studies found no significant effects for ablation of adult neurogenesis on spatial memory, cue conditioning or ethological measures of anxiety. An effect on contextual freezing was significant at a threshold of 5% (P = 0.04), but not at a threshold corrected for multiple testing. The meta-analysis revealed remarkably high levels of heterogeneity among studies of hippocampal function. The source of this heterogeneity remains unclear and poses a challenge for studies of the function of adult neurogenesis.

  • BDNF-TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior.

    27 October 2017

    The physiology of brain-derived neurotrophic factor signaling in enkephalinergic striatopallidal neurons is poorly understood. Changes in cortical Bdnf expression levels, and/or impairment in brain-derived neurotrophic factor anterograde transport induced by mutant huntingtin (mHdh) are believed to cause striatopallidal neuron vulnerability in early-stage Huntington's disease. Although several studies have confirmed a link between altered cortical brain-derived neurotrophic factor signaling and striatal vulnerability, it is not known whether the effects are mediated via the brain-derived neurotrophic factor receptor TrkB, and whether they are direct or indirect. Using a novel genetic mouse model, here, we show that selective removal of brain-derived neurotrophic factor-TrkB signaling from enkephalinergic striatal targets unexpectedly leads to spontaneous and drug-induced hyperlocomotion. This is associated with dopamine D2 receptor-dependent increased striatal protein kinase C and MAP kinase activation, resulting in altered intrinsic activation of striatal enkephalinergic neurons. Therefore, brain-derived neurotrophic factor/TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior by modulating neuronal activity in response to excitatory input through the protein kinase C/MAP kinase pathway.

  • Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala.

    17 November 2017

    Genetic association studies suggest that variations in the 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) gene are associated with susceptibility to psychiatric disorders such as anxiety or posttraumatic stress disorder. Individuals carrying high 5-HTT-expressing gene variants display low amygdala reactivity to fearful stimuli. Mice overexpressing the 5-HTT (5-HTTOE), an animal model of this human variation, show impaired fear, together with reduced fear-evoked theta oscillations in the basolateral amygdala (BLA). However, it is unclear how variation in 5-HTT gene expression impacts on the microcircuitry of the BLA to change behavior. We addressed this issue by investigating the activity of parvalbumin (PV)-expressing interneurons (PVINs), the biggest IN population in the basal amygdala (BA). We found that increased 5-HTT expression impairs the recruitment of PVINs (measured by their c-Fos immunoreactivity) during fear. Ex vivo patch-clamp recordings demonstrated that the depolarizing effect of 5-HT on PVINs was mediated by 5-HT2A receptor. In 5-HTTOE mice, 5-HT-evoked depolarization of PVINs and synaptic inhibition of principal cells, which provide the major output of the BA, were impaired. This deficit was because of reduced 5-HT2A function and not because of increased 5-HT uptake. Collectively, these findings provide novel cellular mechanisms that are likely to contribute to differences in emotional behaviors linked with genetic variations of the 5-HTT.

  • Unilateral medial frontal cortex lesions cause a cognitive decision-making deficit in rats.

    27 October 2017

    The medial frontal cortex (MFC) is critical for cost-benefit decision-making. Generally, cognitive and reward-based behaviour in rodents is not thought to be lateralised within the brain. In this study, however, we demonstrate that rats with unilateral MFC lesions show a profound change in decision-making on an effort-based decision-making task. Furthermore, unilateral MFC lesions have a greater effect when the rat has to choose to put in more effort for a higher reward when it is on the contralateral side of space to the lesion. Importantly, this could not be explained by motor impairments as these animals did not show a turning bias in separate experiments. In contrast, rats with unilateral dopaminergic midbrain lesions did exhibit a motoric turning bias, but were unimpaired on the effort-based decision-making task. This rare example of a cognitive deficit caused by a unilateral cortical lesion in the rat brain indicates that the MFC may have a specialised and lateralised role in evaluating the costs and benefits of actions directed to specific spatial locations.

  • Alterations in spatial memory and anxiety in the MAM E17 rat model of hippocampal pathology in schizophrenia.

    17 November 2017

    Adult rats exposed to methylazoxymethanol acetate (MAM) at embryonic day 17 (E17) display robust pathological alterations in the hippocampus. However, discrepancies exist in the literature regarding the behavioural effects of this pre-natal manipulation. Therefore, a systematic assessment of MAM E17-induced behavioural alterations was conducted using a battery of dorsal and ventral hippocampus-dependent tests. Compared to saline controls, MAM E17-treated rats displayed deficits in spatial reference memory in both the aversive hidden platform watermaze task and an appetitive Y-maze task. Deficits in the spatial reference memory watermaze task were replicated across three different cohorts and two laboratories. In contrast, there was little, or no, effect on the non-spatial, visible platform watermaze task or an appetitive, non-spatial, visual discrimination task, respectively. MAM rats were also impaired in the spatial novelty preference task which assesses short-term memory, and displayed reduced anxiety levels in the elevated plus maze task. Thus, MAM E17 administration resulted in abnormal spatial information processing and reduced anxiety in a number of hippocampus-dependent behavioural tests, paralleling the effects of dorsal and ventral hippocampal lesions, respectively. These findings corroborate recent pathological and physiological studies, further highlighting the usefulness of MAM E17 as a model of hippocampal dysfunction in at least some aspects of schizophrenia.

  • The effect of US signalling and the US-CS interval on backward conditioning in mice.

    27 October 2017

    The effect of US signalling and the US-CS interval in backward conditioning was assessed in mice. For one group of mice the presentation of food was signalled by a tone and for another group, food was unsignalled. For half of the mice, within each group, the presentation of food preceded a visual cue by 10 s. For the other half, food was presented at the start of the visual cue (0-s US-CS interval), resulting in simultaneous pairings of these events. A summation test and a subsequent retardation test were used to assess the inhibitory effects of backward conditioning in comparison to training with a non-reinforced visual cue that controlled for the possible effects of latent inhibition and conditioned inhibition caused as a consequence of differential conditioning. In the summation test unsignalled presentations of the US resulted in inhibition when the US-CS interval was 10 s, but not 0 s. Signalled presentations of the US resulted in inhibition, independent of the US-CS interval. In the retardation test, independent of US signalling, a US-CS interval of 10 s failed to result in inhibition, but an interval of 0 s resulted in greater conditioned responding to the backward CS than the control CS. A generalisation decrement account of the effect of signalling the US with a 0-s US-CS interval, which resulted in reduced responding in the summation test and faster acquisition in the retardation test, is discussed.

  • Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome.

    22 November 2017

    Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus-CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior in vivo. These results highlight the vulnerability of dentate gyrus-CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.

  • Hippocampal acetylcholine depletion has no effect on anxiety, spatial novelty preference, or differential reward for low rates of responding (DRL) performance in rats.

    20 November 2017

    We investigated the role of the septo-hippocampal cholinergic projection in anxiety, spatial novelty preference, and differential reward for low rates of responding (DRL) performance. Cholinergic neurons of the rat medial septum (MS) and the vertical limb of the diagonal band of Broca (VDB) were lesioned using the selective immunotoxin, 192 IgG-saporin. Rats were then tested on several behavioral tests previously shown to be sensitive to either (a) hippocampal lesions or (b) nonselective MS/VDB lesions which target both cholinergic and γ-aminobutyric acid (GABA)-ergic projections, or both. Saporin lesions substantially reduced hippocampal cholinergic innervation, resulting in an absence of acetyl cholinesterase staining and markedly reduced choline acetyltransferase activity (mean reduction: 80 ± 5%; range: 50-97%). However, the saporin-lesioned rats did not differ from control rats in any of the behavioral tests. Thus we found no evidence from these lesion studies that the septo-hippocampal cholinergic projection plays an essential role in anxiety, spatial novelty preference, or DRL.