Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Cerebral organization for language in deaf and hearing subjects: biological constraints and effects of experience.

    8 August 2018

    Cerebral organization during sentence processing in English and in American Sign Language (ASL) was characterized by employing functional magnetic resonance imaging (fMRI) at 4 T. Effects of deafness, age of language acquisition, and bilingualism were assessed by comparing results from (i) normally hearing, monolingual, native speakers of English, (ii) congenitally, genetically deaf, native signers of ASL who learned English late and through the visual modality, and (iii) normally hearing bilinguals who were native signers of ASL and speakers of English. All groups, hearing and deaf, processing their native language, English or ASL, displayed strong and repeated activation within classical language areas of the left hemisphere. Deaf subjects reading English did not display activation in these regions. These results suggest that the early acquisition of a natural language is important in the expression of the strong bias for these areas to mediate language, independently of the form of the language. In addition, native signers, hearing and deaf, displayed extensive activation of homologous areas within the right hemisphere, indicating that the specific processing requirements of the language also in part determine the organization of the language systems of the brain.

  • Perception and Processing of Faces in the Human Brain Is Tuned to Typical Feature Locations.

    8 August 2018

    UNLABELLED: Faces are salient social stimuli whose features attract a stereotypical pattern of fixations. The implications of this gaze behavior for perception and brain activity are largely unknown. Here, we characterize and quantify a retinotopic bias implied by typical gaze behavior toward faces, which leads to eyes and mouth appearing most often in the upper and lower visual field, respectively. We found that the adult human visual system is tuned to these contingencies. In two recognition experiments, recognition performance for isolated face parts was better when they were presented at typical, rather than reversed, visual field locations. The recognition cost of reversed locations was equal to ∼60% of that for whole face inversion in the same sample. Similarly, an fMRI experiment showed that patterns of activity evoked by eye and mouth stimuli in the right inferior occipital gyrus could be separated with significantly higher accuracy when these features were presented at typical, rather than reversed, visual field locations. Our findings demonstrate that human face perception is determined not only by the local position of features within a face context, but by whether features appear at the typical retinotopic location given normal gaze behavior. Such location sensitivity may reflect fine-tuning of category-specific visual processing to retinal input statistics. Our findings further suggest that retinotopic heterogeneity might play a role for face inversion effects and for the understanding of conditions affecting gaze behavior toward faces, such as autism spectrum disorders and congenital prosopagnosia. SIGNIFICANCE STATEMENT: Faces attract our attention and trigger stereotypical patterns of visual fixations, concentrating on inner features, like eyes and mouth. Here we show that the visual system represents face features better when they are shown at retinal positions where they typically fall during natural vision. When facial features were shown at typical (rather than reversed) visual field locations, they were discriminated better by humans and could be decoded with higher accuracy from brain activity patterns in the right occipital face area. This suggests that brain representations of face features do not cover the visual field uniformly. It may help us understand the well-known face-inversion effect and conditions affecting gaze behavior toward faces, such as prosopagnosia and autism spectrum disorders.

  • Increased THEMIS First Exon Usage in CD4+ T-Cells Is Associated with a Genotype that Is Protective against Multiple Sclerosis.

    8 August 2018

    Multiple sclerosis is an autoimmune disease of the central nervous system. Genome wide association studies have identified over 100 common variants associated with multiple sclerosis, the majority of which implicate immunologically relevant genes, particularly those involved in T-cell development. SNP rs13204742 at the THEMIS/PTPRK locus is one such variant. Here, we have demonstrated mutually exclusive use of exon 1 and 2 amongst 16 novel THEMIS isoforms. We also show inverse correlation between THEMIS expression in human CD4+ T-cells and dosage of the multiple sclerosis risk allele at rs13204742, driven by reduced expression of exon 1- containing isoforms. In silico analysis suggests that this may be due to cell-specific, allele-dependent binding of the transcription factors FoxP3 and/or E47. Research exploring the functional implications of GWAS variants is important for gaining an understanding of disease pathogenesis, with the ultimate aim of identifying new therapeutic targets.

  • Neurochemical abnormalities in premanifest and early spinocerebellar ataxias.

    8 August 2018

    OBJECTIVE: To investigate whether early neurochemical abnormalities are detectable by high-field magnetic resonance spectroscopy (MRS) in individuals with spinocerebellar ataxias (SCAs) 1, 2, 3, and 6, including patients without manifestation of ataxia. METHODS: A cohort of 100 subjects (N = 18-21 in each SCA group, including premanifest mutation carriers; mean score on the Scale for the Assessment and Rating of Ataxia [SARA] <10 for all genotypes, and 22 matched controls) was scanned at 7 Tesla to obtain neurochemical profiles of the cerebellum and brainstem. A novel multivariate approach (distance-weighted discrimination) was used to combine regional profiles into an "MRS score." RESULTS: MRS scores robustly distinguished individuals with SCA from controls, with misclassification rates of 0% (SCA2), 2% (SCA3), 5% (SCA1), and 17% (SCA6). Premanifest mutation carriers with estimated disease onset within 10 years had MRS scores in the range of early-manifest SCA subjects. Levels of neuronal and glial markers significantly correlated with SARA and an Activities of Daily Living score in subjects with SCA. Regional neurochemical alterations were different between SCAs at comparable disease severity, with SCA2 displaying the most extensive neurochemical abnormalities, followed by SCA1, SCA3, and SCA6. INTERPRETATION: Neurochemical abnormalities are detectable in individuals before manifest disease, which may allow premanifest enrollment in future SCA trials. Correlations with ataxia and quality-of-life scores show that neurochemical levels can serve as clinically meaningful endpoints in trials. Ranking of SCA types by degree of neurochemical abnormalities indicates that the neurochemistry may reflect synaptic function or density. Ann Neurol 2018;83:816-829.

  • Using Arterial Spin Labelling to Investigate Spontaneous and Evoked Ongoing Musculoskeletal Pain

    8 August 2018

    Clinical pain is difficult to study using standard Blood Oxygenation Level Dependent (BOLD) magnetic resonance imaging because it is often ongoing and, if evoked, it is associated with stimulus-correlated motion. Arterial spin labelling (ASL) offers an attractive alternative. This study used arm repositioning to evoke clinically-relevant musculoskeletal pain in patients with shoulder impingement syndrome. Fifty-five patients were scanned using a multi post-labelling delay pseudo-continuous ASL (pCASL) sequence, first with both arms along the body and then with the affected arm raised into a painful position. Twenty healthy volunteers were scanned as a control group. Arm repositioning resulted in increased perfusion in brain regions involved in sensory processing and movement integration, such as the contralateral primary motor and primary somatosensory cortex, mid- and posterior cingulate cortex, and, bilaterally, in the insular cortex/operculum, putamen, thalamus, midbrain and cerebellum. Perfusion in the thalamus, midbrain and cerebellum was larger in the patient group. Results of a post hoc analysis suggested that the observed perfusion changes were related to pain rather than arm repositioning. This study showed that ASL can be useful in research on clinical ongoing musculoskeletal pain but the technique is not sensitive enough to detect small differences in perfusion.

  • Enhanced Neural Responses to Imagined Primary Rewards Predict Reduced Monetary Temporal Discounting.

    8 August 2018

    The pervasive tendency to discount the value of future rewards varies considerably across individuals and has important implications for health and well-being. Here, we used fMRI with human participants to examine whether an individual's neural representation of an imagined primary reward predicts the degree to which the value of delayed monetary payments is discounted. Because future rewards can never be experienced at the time of choice, imagining or simulating the benefits of a future reward may play a critical role in decisions between alternatives with either immediate or delayed benefits. We found that enhanced ventromedial prefrontal cortex response during imagined primary reward receipt was correlated with reduced discounting in a separate monetary intertemporal choice task. Furthermore, activity in enhanced ventromedial prefrontal cortex during reward imagination predicted temporal discounting behavior both between- and within-individual decision makers with 62% and 73% mean balanced accuracy, respectively. These results suggest that the quality of reward imagination may impact the degree to which future outcomes are discounted. Significance statement: We report a novel test of the hypothesis that an important factor influencing the discount rate for future rewards is the quality with which they are imagined or estimated in the present. Previous work has shown that temporal discounting is linked to individual characteristics ranging from general intelligence to the propensity for addiction. We demonstrate that individual differences in a neurobiological measure of primary reward imagination are significantly correlated with discounting rates for future monetary payments. Moreover, our neurobiological measure of imagination can be used to accurately predict choice behavior both between and within individuals. These results suggest that improving reward imagination may be a useful therapeutic target for individuals whose high discount rates promote detrimental behaviors.

  • Development of EpiRisk: An online clinical tool for estimating the risk of major congenital malformations in pregnant women treated for epilepsy

    8 August 2018

    Antiepileptic drugs (AEDs) are known to associate with an increased risk of major congenital malformations (MCMs) in children born to women who become pregnant while taking them. As the indications for AEDs continue to diversify, novel AEDs emerge, and polytherapy becomes more prevalent, the volume and complexity of the information relating to teratogenic risk can become unmanageable for the clinician. This in turn makes accurate education of pregnant women treated with AEDs regarding the risk of MCMs challenging. To enable clinicians to provide better information regarding the potential teratogenic risk of AEDs, we outline here the method we have employed to underpin a new system of real‐time risk analysis, “EpiRisk.” When launched, EpiRisk will offer a user‐friendly, online clinical tool, compatible with all modern Internet browsers, smart phones, and personal computers. Using the most current published data, as well as “real world” data from the UK and the Australian Pregnancy Registers, EpiRisk will enable clinicians to quickly and accurately assess the teratogenic risk of AEDs in mono‐ and polytherapy. EpiRisk may thus provide a future‐proof central hub for empowering patients, clinicians, and registries by delivering evidence‐based information on the teratogenic risk of the AEDs in pregnant women with epilepsy through an easily accessible platform.

  • Mind the gap: temporal discrimination and dystonia.

    8 August 2018

    BACKGROUND AND PURPOSE: One of the most widely studied perceptual measures of sensory dysfunction in dystonia is the temporal discrimination threshold (TDT) (the shortest interval at which subjects can perceive that there are two stimuli rather than one). However the elevated thresholds described may be due to a number of potential mechanisms as current paradigms test not only temporal discrimination but also extraneous sensory and decision-making parameters. In this study two paradigms designed to better quantify temporal processing are presented and a decision-making model is used to assess the influence of decision strategy. METHODS: 22 patients with cervical dystonia and 22 age-matched controls completed two tasks (i) temporal resolution (a randomized, automated version of existing TDT paradigms) and (ii) interval discrimination (rating the length of two consecutive intervals). RESULTS: In the temporal resolution task patients had delayed (P = 0.021) and more variable (P = 0.013) response times but equivalent discrimination thresholds. Modelling these effects suggested this was due to an increased perceptual decision boundary in dystonia with patients requiring greater evidence before committing to decisions (P = 0.020). Patient performance on the interval discrimination task was normal. CONCLUSIONS: Our work suggests that previously observed abnormalities in TDT may not be due to a selective sensory deficit of temporal processing as decision-making itself is abnormal in cervical dystonia.

  • A preliminary modeling investigation into the safe correction zone for high tibial osteotomy.

    8 August 2018

    BACKGROUND: High tibial osteotomy (HTO) re-aligns the weight-bearing axis (WBA) of the lower limb. The surgery reduces medial load (reducing pain and slowing progression of cartilage damage) while avoiding overloading the lateral compartment. The optimal correction has not been established. This study investigated how different WBA re-alignments affected load distribution in the knee, to consider the optimal post-surgery re-alignment. METHODS: We collected motion analysis and seven Tesla MRI data from three healthy subjects, and combined this data to create sets of subject-specific finite element models (total=45 models). Each set of models simulated a range of potential post-HTO knee re-alignments. We shifted the WBA from its native alignment to between 40% and 80% medial-lateral tibial width (corresponding to 2.8°-3.1° varus and 8.5°-9.3° valgus), in three percent increments. We then compared stress/pressure distributions in the models. RESULTS: Correcting the WBA to 50% tibial width (0° varus-valgus) approximately halved medial compartment stresses, with minimal changes to lateral stress levels, but provided little margin for error in undercorrection. Correcting the WBA to a more commonly-used 62%-65% tibial width (3.4°-4.6° valgus) further reduced medial stresses but introduced the danger of damaging lateral compartment tissues. To balance optimal loading environment with that of the historical risk of under-correction, we propose a new target: WBA correction to 55% tibial width (1.7°-1.9° valgus), which anatomically represented the apex of the lateral tibial spine. CONCLUSIONS: Finite element models can successfully simulate a variety of HTO re-alignments. Correcting the WBA to 55% tibial width (1.7°-1.9° valgus) optimally distributes medial and lateral stresses/pressures.