Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • A 31P-NMR study of muscle exercise metabolism in mdx mice: evidence for abnormal pH regulation.

    24 October 2018

    We have studied exercise metabolism in vivo in the mdx mouse model of Duchenne muscular dystrophy with 31P-nuclear magnetic resonance spectroscopy. Intracellular pH, ratios of phosphocreatine (PCr) to ATP and PCr to inorganic phosphate (P(i)) expressed as PCr/ATP and PCr/(PCr+P(i)) as well as tension generated at the Achilles tendon were measured during sciatic nerve stimulation. Tension was similar between the mdx and control strain C57Bl/10ScSn at 10 Hz stimulation but slightly higher than the control at 100 Hz. The PCr/ATP and PCr/(PCr+P(i)) ratios were significantly reduced in mdx vs. control muscle during exercise. Although resting muscle pH in mdx mice is more alkaline than normal muscle, the pH of mdx muscle during exercise is reduced relative to controls, as is the rate of pH recovery. Total lactate is not elevated in the cells and so it is argued that there is a reduction in the capacity to export proton equivalents in muscles of mdx mice which could be caused by an elevation in intracellular sodium. This provides more evidence of impaired ionic regulation in dystrophic muscle and could be used as an index for the evaluation in vivo of therapeutic interventions such as myoblast transfer or gene replacement therapy.

  • Measurement of relative cerebral blood volume using BOLD contrast and mild hypoxic hypoxia.

    24 October 2018

    Relative cerebral blood volume (CBV) was estimated using a mild hypoxic challenge in humans, combined with BOLD contrast gradient-echo imaging at 3 T. Subjects breathed 16% inspired oxygen, eliciting mild arterial desaturation. The fractional BOLD signal change induced by mild hypoxia is expected to be proportional to CBV under conditions in which there are negligible changes in cerebral perfusion. By comparing the regional BOLD signal changes arising with the transition between normoxia and mild hypoxia, we calculated CBV ratios of 1.5 ± 0.2 (mean ± S.D.) for cortical gray matter to white matter and 1.0 ± 0.3 for cortical gray matter to deep gray matter.

  • Sex hormones and pain: the evidence from functional imaging.

    24 October 2018

    There is a substantial body of epidemiological and clinical evidence suggesting that the sex hormones, particularly estradiol and progesterone, play a role in pain. Behavioral studies have not been useful in understanding the relationship between sex hormones and pain perception, and certainly have not helped to elucidate the mechanisms by which such effects may be mediated. This review aims to address the additional insights functional imaging has given us into the role of sex hormones in pain. Functional imaging techniques and experimental designs are discussed before the literature investigating specific questions relating to hormones and pain is reviewed. Finally, we conclude by considering how results of studies imaging the influence of sex hormones in related areas such as emotion and cognition also may inform our understanding of this complex area.

  • Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based morphometric study.

    24 October 2018

    OBJECTIVE: Voxel-based morphometry (VBM) is a method of assessing brain gray matter volume that has previously been applied to various chronic pain conditions. From this previous work, it appears that chronic pain is associated with altered brain morphology. The present study was undertaken to assess these potential alterations in patients with painful hip osteoarthritis (OA). METHODS: We studied 16 patients with unilateral right-sided hip pain, before and 9 months after hip arthroplasty. This enabled comparison of gray matter volume in patients with chronic musculoskeletal pain versus healthy controls, as well as identification of any changes in volume following alleviation of pain (after surgery). Assessment involved self-completion questionnaires to assess pain, function, and psychosocial variables, and magnetic resonance imaging scanning of the brain for VBM analysis. RESULTS: Significant differences in brain gray matter volume between healthy controls and patients with painful hip arthritis were seen. Specifically, areas of the thalamus in patients with chronic OA pain exhibited decreased gray matter volume. Furthermore, when these preoperative changes were compared with the brain morphology of the patients 9 months after surgery, the areas of reduced thalamic gray matter volume were found to have "reversed" to levels seen in healthy controls. CONCLUSION: Our findings confirm that gray matter volume decreases within the left thalamus in the presence of chronic pain and disability in patients with hip OA. The results also show that these thalamic volume changes reverse after hip arthroplasty and are associated with decreased pain and increased function. These findings have potential implications with regard to optimizing the timing of orthopedic interventions such as arthroplasty.

  • Neuroimaging as a tool for pain diagnosis and analgesic development.

    24 October 2018

    Neuroimaging makes it possible to study pain processing beyond the peripheral nervous system, at the supraspinal level, in a safe, noninvasive way, without interfering with neurophysiological processes. In recent years, studies using brain imaging methods have contributed to our understanding of the mechanisms responsible for the development and maintenance of chronic pain. Moreover, neuroimaging shows promising results for analgesic drug development and in characterizing different types of pain, bringing us closer to development of mechanism-based diagnoses and treatments for the chronic pain patient.

  • Pharmacological FMRI in the development of new analgesic compounds.

    24 October 2018

    Chronic pain is a major problem for the individual and for society. Despite a range of drugs being available to treat chronic pain, only inadequate pain relief can be achieved for many patients. There is therefore a need for the development of new analgesic compounds. The assessment of pain depends to date entirely on the subjective report of the patient, in contrast to many other clinical conditions where biomarkers that help determine the severity and stage of the disease enable the physician to monitor the course of the disease and treatment effects longitudinally. In this article, we illustrate that magnetic resonance-based imaging techniques have the potential to provide sensitive and specific biomarkers of the pain experience, as well as clarifying disease mechanisms. Functional magnetic resonance imaging (FMRI) is particularly suited to investigating the effects of pharmacological agents on pain processing within the human central nervous system. Combination of FMRI and drug administration is termed pharmacological FMRI (phFMRI). In addition to outlining several methodological considerations that have to be taken into account when performing phFMRI, we discuss phFMRI studies that have already used this technique to study the effects of analgesic compounds. These studies provide promising data for the use of phFMRI as sensitive tool in assessing a potential drug effect. Such pharmacodynamic readouts obtained early in the process of drug development would not only save the pharmaceutical industry substantial amounts of money, but would also avoid the unnecessary exposure of patients to molecules with limited or no therapeutic value. We are therefore optimistic that phFMRI will be used as a tool with high sensitivity and specificity for evaluating analgesic agents in early drug development and clinical studies.