Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Atypical brain connectivity is a major contributor to the pathophysiology of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASDs). TAOK2 is one of several genes in the 16p11.2 microdeletion region, but whether it contributes to NDDs is unknown. We performed behavioral analysis on Taok2 heterozygous (Het) and knockout (KO) mice and found gene dosage-dependent impairments in cognition, anxiety, and social interaction. Taok2 Het and KO mice also have dosage-dependent abnormalities in brain size and neural connectivity in multiple regions, deficits in cortical layering, dendrite and synapse formation, and reduced excitatory neurotransmission. Whole-genome and -exome sequencing of ASD families identified three de novo mutations in TAOK2 and functional analysis in mice and human cells revealed that all the mutations impair protein stability, but they differentially impact kinase activity, dendrite growth, and spine/synapse development. Mechanistically, loss of Taok2 activity causes a reduction in RhoA activation, and pharmacological enhancement of RhoA activity rescues synaptic phenotypes. Together, these data provide evidence that TAOK2 is a neurodevelopmental disorder risk gene and identify RhoA signaling as a mediator of TAOK2-dependent synaptic development.

Original publication

DOI

10.1038/s41380-018-0025-5

Type

Journal article

Journal

Mol Psychiatry

Publication Date

09/2019

Volume

24

Pages

1329 - 1350

Keywords

Adult, Animals, Anxiety, Autism Spectrum Disorder, Child, Cognitive Dysfunction, Dendrites, Female, Humans, Interpersonal Relations, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Neurodevelopmental Disorders, Neurogenesis, Phenotype, Phosphorylation, Protein-Serine-Threonine Kinases, Signal Transduction, Synaptic Transmission, Whole Exome Sequencing, rhoA GTP-Binding Protein