BACKGROUND: The purpose of this study was to identify patterns of structural disconnection and multivariate lesion-behaviour relationships associated with post-stroke deficits across six commonly impacted cognitive domains: executive function, language, memory, numerical processing, praxis, and visuospatial attention. METHODS: Stroke survivors (n = 593) completed a brief domain-specific cognitive assessment (the Oxford Cognitive Screen (OCS)) during acute hospitalisation. Network-level and multivariate (sparce canonical correlation) lesion mapping analyses were conducted to identify focal neural correlates and distributed patterns of structural disconnection associated with impairment on each of the 16 OCS measures. RESULTS: Network-level and multivariate lesion mapping analyses identified significant correlates for 12/16 and 10/16 OCS measures, respectively which were largely consistent with correlates reported in past work. Language impairments were reliably localised to network- and voxel-level correlates centred in left fronto-temporal regions. Memory impairments were associated with disconnection in a large network of left hemisphere regions. Number processing deficits were associated with damage to voxels centred in the left insular/opercular cortex, as well as disconnection within the surrounding white matter tracts. Within the domain of attention, different subtypes of visuospatial neglect were linked to distinct but partially overlapping patterns of disconnection and voxel-level damage. Praxis impairment was not linked to any voxel-level regions but was significantly associated with disconnection within the left hemisphere dorsal attention network. CONCLUSION: These results highlight the utility of routine, domain-specific cognitive assessment and imaging data for theoretically-driven lesion mapping analyses, while providing novel insight into the complex anatomical correlates of common and debilitating post-stroke cognitive impairments.
10.1016/j.neuropsychologia.2024.109007
Journal article
Neuropsychologia
02/10/2024
204
Clinical imaging, Cognitive screening, Lesion symptom mapping, Neuropsychological assessment, Stroke