Search results
Found 23618 matches for
A team including Professor David Bennett has uncovered the physical cause of trench foot more than 100 years after the painful and debilitating condition was first identified in the First World War.
Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task: A Behavioural and Transcranial Alternating Current Stimulation Study
Many tasks require the skilled interaction of both hands, such as eating with knife and fork or keyboard typing. However, our understanding of the behavioural and neurophysiological mechanisms underpinning bimanual motor learning is still sparse. Here, we aimed to address this by first characterising learning-related changes of different levels of bimanual interaction and second investigating how beta tACS modulates these learning-related changes. To explore early bimanual motor learning, we designed a novel bimanual motor learning task. In the task, a force grip device held in each hand (controlling x- and y-axis separately) was used to move a cursor along a path of streets at different angles (0°, 22.5°, 45°, 67.5°, and 90°). Each street corresponded to specific force ratios between hands, which resulted in different levels of hand interaction, i.e., unimanual (Uni, i.e., 0°, 90°), bimanual with equal force (Bieq, 45°), and bimanual with unequal force (Biuneq 22.5°, 67.5°). In experiment 1, 40 healthy participants performed the task for 45 min with a minimum of 100 trials. We found that the novel task induced improvements in movement time and error, with no trade-off between movement time and error, and with distinct patterns for the three levels of bimanual interaction. In experiment 2, we performed a between-subjects, double-blind study in 54 healthy participants to explore the effect of phase synchrony between both sensorimotor cortices using tACS at the individual’s beta peak frequency. The individual’s beta peak frequency was quantified using electroencephalography. 20 min of 2 mA peak-to-peak amplitude tACS was applied during task performance (40 min). Participants either received in-phase (0° phase shift), out-of-phase (90° phase shift), or sham (3 s of stimulation) tACS. We replicated the behavioural results of experiment 1, however, beta tACS did not modulate motor learning. Overall, the novel bimanual motor task allows to characterise bimanual motor learning with different levels of bimanual interaction. This should pave the way for future neuroimaging studies to further investigate the underlying mechanism of bimanual motor learning.
Oxytocin Exhibits Neuroprotective Effects on Hippocampal Cultures under Severe Oxygen–Glucose Deprivation Conditions
Perinatal asphyxia (PA) and hypoxic-ischemic encephalopathy can result in severe, long-lasting neurological deficits. In vitro models, such as oxygen–glucose deprivation (OGD), are used experimentally to investigate neuronal response to metabolic stress. However, multiple variables can affect the severity level of OGD/PA and may confound any measured treatment effect. Oxytocin (OXT) has emerged as a potential neuroprotective agent against the deleterious effects of PA. Previous studies have demonstrated OXT’s potential to enhance neuronal survival in immature hippocampal cultures exposed to OGD, possibly by modulating gamma-aminobutyric acid-A receptor activity. Moreover, OXT’s precise impact on developing hippocampal neurons under different severities of OGD/PA remains uncertain. In this study, we investigated the effects of OXT (0.1 µM and 1 µM) on 7-day-old primary rat hippocampal cultures subjected to 2 h OGD/sham normoxic conditions. Cell culture viability was determined using the resazurin assay. Our results indicate that the efficacy of 1 µM OXT treatment varied according to the severity of the OGD-induced lesion, exhibiting a protective effect (p = 0.022) only when cellular viability dropped below 49.41% in non-treated OGD cultures compared to normoxic ones. Furthermore, administration of 0.1 µM OXT did not yield significant effects, irrespective of lesion severity (p > 0.05). These findings suggest that 1 µM OXT treatment during OGD confers neuroprotection exclusively in severe lesions in hippocampal neurons after 7 days in vitro. Further research is warranted to elucidate the mechanisms involved in OXT-mediated neuroprotection.
Human motor cortical gamma activity relates to GABAergic intracortical inhibition and motor learning
Abstract Gamma activity (γ, >30 Hz) is universally demonstrated across brain regions and species. However, the physiological basis and functional role of γ sub-bands (slow-γ, mid-γ, fast-γ) have been predominantly studied in rodent hippocampus; γ activity in the human neocortex is much less well understood. We use electrophysiology, non-invasive brain stimulation, and several motor tasks to examine the properties of sensorimotor γ activity sub-bands and their relationship with both local GABAergic activity and motor learning. Data from three experimental studies are presented. Experiment 1 (N = 33) comprises magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and a motor learning paradigm; experiment 2 (N = 19) uses MEG and motor learning; and experiment 3 (N = 18) uses EEG and TMS. We characterised two distinct γ sub-bands (slow-γ, mid-γ) which show a movement-related increase in activity during unilateral index finger movements and are characterised by distinct temporal–spectral–spatial profiles. Bayesian correlation analysis revealed strong evidence for a positive relationship between slow-γ (~30–60 Hz) peak frequency and GABAergic intracortical inhibition (as assessed using the TMS-metric short interval intracortical inhibition). There was also moderate evidence for a relationship between the power of the movement-related mid-γ activity (60–90 Hz) and motor learning. These relationships were neurochemical and frequency specific. These data provide new insights into the neurophysiological basis and functional roles of γ activity in human M1 and allow the development of a new theoretical framework for γ activity in the human neocortex.
A single, clinically relevant dose of the GABAB agonist baclofen impairs visuomotor learning
Key points Baclofen is a GABAB agonist prescribed as a treatment for spasticity in stroke, brain injury and multiple sclerosis patients, who are often undergoing concurrent motor rehabilitation. Decreasing GABAergic inhibition is a key feature of motor learning and so there is a possibility that GABA agonist drugs, such as baclofen, could impair these processes, potentially impacting rehabilitation. Here, we examined the effect of 10 mg of baclofen, in 20 young healthy individuals, and found that the drug impaired retention of visuomotor learning with no significant effect on motor sequence learning. Overall baclofen did not alter transcranial magnetic stimulation‐measured GABAB inhibition, although the change in GABAB inhibition correlated with aspects of visuomotor learning retention. Further work is needed to investigate whether taking baclofen impacts motor rehabilitation in patients. AbstractThe GABAB agonist baclofen is taken daily as a treatment for spasticity by millions of stroke, brain injury and multiple sclerosis patients, many of whom are also undergoing motor rehabilitation. However, decreases in GABA are suggested to be a key feature of human motor learning, which raises questions about whether drugs increasing GABAergic activity may impair motor learning and rehabilitation. In this double‐blind, placebo‐controlled study, we investigated whether a single 10 mg dose of the GABAB agonist baclofen impaired motor sequence learning and visuomotor learning in 20 young healthy participants of both sexes. Participants trained on visuomotor and sequence learning tasks using their right hand. Transcranial magnetic stimulation (TMS) measures of corticospinal excitability, GABAA (short‐interval intracortical inhibition, 2.5 ms) and GABAB (long‐interval intracortical inhibition, 150 ms) receptor activation were recorded from left M1. Behaviourally, baclofen caused a significant reduction of visuomotor aftereffect (F1,137.8 = 6.133, P = 0.014) and retention (F1,130.7 = 4.138, P = 0.044), with no significant changes to sequence learning. There were no overall changes to TMS measured GABAergic inhibition with this low dose of baclofen. This result confirms the causal importance of GABAB inhibition in mediating visuomotor learning and suggests that chronic baclofen use could negatively impact aspects of motor rehabilitation.
Maternal High-Fat Diet Modifies the Immature Hippocampus Vulnerability to Perinatal Asphyxia in Rats
<b><i>Background:</i></b> High-fat diet (HFD) is a detrimental habit with harmful systemic consequences, including low-grade, long-lasting inflammation. During pregnancy, HFD can induce developmental changes. Moreover, HFD-related maternal obesity might enhance the risk of peripartum complications including hypoxic-ischemic encephalopathy secondary to perinatal asphyxia (PA). <b><i>Objectives:</i></b> Following our previous results showing that PA increases neuroinflammation and neuronal injury in the immature hippocampus and modifies hippocampal epigenetic programming, we further aimed to establish the impact of maternal HFD on offspring hippocampus response to PA. <b><i>Methods:</i></b> We assessed hippocampal tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1b) and S-100B protein (S-100B), 24–48 h after PA exposure in postnatal day 6 Wistar rats, whose mothers received either the standard diet or HFD. The expression of small non-coding microRNA species miR124, miR132, miR134, miR146, and miR15a, as epigenetic markers for the maternal dietary influence on immature hippocampus response after PA, was determined 24 h after asphyxia exposure. Metabolic activity was measured using resazurin test in hippocampal cell suspension obtained 24 h after PA. <b><i>Results:</i></b> Our results indicate that maternal HFD additionally increases hippocampal TNFα, IL-1b, and S-100B after PA. Also, PA associated with maternal HFD induces miR124 upregulation and miR132 downregulation relative to PA only. Metabolic activity was increased in hippocampal cells from pups whose mothers received HFD. <b><i>Conclusion:</i></b> HFD increases the PA-induced neuroinflammation and neuronal injury, and epigenetically influences homeostatic synaptic plasticity and neuronal tolerance to asphyxia, processes associated with a higher hippocampal cellular metabolism.
Neuronal Transmembrane Chloride Transport Has a Time-Dependent Influence on Survival of Hippocampal Cultures to Oxygen-Glucose Deprivation
Neuronal ischemia results in chloride gradient alterations which impact the excitatory–inhibitory balance, volume regulation, and neuronal survival. Thus, the Na+/K+/Cl− co-transporter (NKCC1), the K+/ Cl− co-transporter (KCC2), and the gamma-aminobutyric acid A (GABAA) receptor may represent therapeutic targets in stroke, but a time-dependent effect on neuronal viability could influence the outcome. We, therefore, successively blocked NKCC1, KCC2, and GABAA (with bumetanide, DIOA, and gabazine, respectively) or activated GABAA (with isoguvacine) either during or after oxygen-glucose deprivation (OGD). Primary hippocampal cultures were exposed to a 2-h OGD or sham normoxia treatment, and viability was determined using the resazurin assay. Neuronal viability was significantly reduced after OGD, and was further decreased by DIOA treatment applied during OGD (p < 0.01) and by gabazine applied after OGD (p < 0.05). Bumetanide treatment during OGD increased viability (p < 0.05), while isoguvacine applied either during or after OGD did not influence viability. Our data suggests that NKCC1 and KCC2 function has an important impact on neuronal viability during the acute ischemic episode, while the GABAA receptor plays a role during the subsequent recovery period. These findings suggest that pharmacological modulation of transmembrane chloride transport could be a promising approach during stroke and highlight the importance of the timing of treatment application in relation to ischemia-reoxygenation.
Ultrasound system for precise neuromodulation of human deep brain circuits
Abstract We introduce an advanced transcranial ultrasound stimulation (TUS) system for precise deep brain neuromodulation, featuring a 256-element helmet-shaped transducer array (555 kHz), stereotactic positioning, individualised planning, and real-time fMRI monitoring. Experiments demonstrated selective modulation of the lateral geniculate nucleus (LGN) and connected visual cortex regions. Participants showed significantly increased visual cortex activity during concurrent TUS and visual stimulation, with high cross-individual reproducibility. A theta-burst TUS protocol produced robust neuromodulatory effects, decreasing visual cortex activity for at least 40 min post-stimulation. Control experiments confirmed these effects were specific to the targeted LGN. Our findings reveal this system’s potential to non-invasively modulate deep brain circuits with unprecedented precision and specificity, offering new avenues for studying brain function and developing targeted therapies for neurological and psychiatric disorders, with transformative potential for both research and clinical applications.
Baclofen, a GABAB receptor agonist, impairs motor learning in healthy people and changes inhibitory dynamics in motor areas
Abstract Inhibition mediated by γ-aminobutyric acid (GABA) is implicated in motor plasticity and learning, with [GABA] in the motor cortex decreasing during motor learning. However, the causal relationship between [GABA] and learning has yet to be determined. Here, we conducted a within-subject, double-blind, placebo-controlled, crossover study to investigate the effect of increased GABAergic inhibition via GABAB-receptor agonist baclofen on motor learning and Magnetic Resonance Spectroscopic Imaging (MRSI) metrics. Increasing GABA-mediated inhibition with baclofen did not change response times, but significantly impaired motor sequence learning. In parallel, we demonstrated a blunting of the expected decrease in [GABA] during motor learning. These results highlight a causal role for GABAergic inhibition in motor learning and may have clinical implications: baclofen is commonly used to treat post brain-injury spasticity, but may impair motor learning during rehabilitation.
Brain signatures of nociplastic pain: Fibromyalgia Index and descending modulation at population level
Abstract Nociplastic pain is defined by altered nociceptive processing in the absence of clear peripheral damage or somatosensory lesions. The Fibromyalgia Index (FMI), derived from the 2016 diagnostic criteria, is increasingly used as a marker of nociplastic pain severity in clinical studies, yet its neurobiological validity remains untested at scale. Using multimodal neuroimaging data from over 40,000 participants in UK Biobank, we examined whether FMI scores were associated with altered functional and structural connectivity within the descending pain modulatory system (DPMS), a brain network involved in endogenous pain control and implicated in nociplastic pain conditions. Functional connectivity was assessed using resting-state functional MRI (rfMRI), and structural connectivity using diffusion-weighted MRI (dMRI) tractography. Connectivity was quantified between seven DPMS regions: periaqueductal grey (PAG), rostral ventromedial medulla (RVM), hypothalamus, amygdala, rostral and subgenual anterior cingulate cortex (rACC, sgACC), and dorsolateral prefrontal cortex (dlPFC). Multi-group structural equation models (SEMs) tested associations between FMI scores and connectivity, stratified by chronic pain status. Mediation models evaluated which aspects of nociplastic pain accounted for the observed associations: widespread pain and SPACE symptoms (Sleep disturbance, Pain, Affect, Cognitive problems, and low Energy). To assess specificity, we repeated analyses using the Douleur Neuropathique 4 (DN4), a measure of neuropathic pain, and average pain intensity as comparison outcomes. In 22,139 individuals with chronic pain (58% female; mean age 64.8, SD 7.59) FMI scores were associated with altered structural connectivity between the PAG and amygdala (β=0.023, 95%CI: 0.0087 to 0.039; Pcorr=0.0125) and between the PAG and hypothalamus (β= -0.029, 95%CI: -0.043 to -0.015; Pcorr =0.0013). Functional connectivity in the same circuits showed smaller effects. These associations were not observed in individuals without chronic pain. Mediation analyses revealed that PAG-amygdala and PAG-hypothalamus connectivity were partially explained by fatigue, sleep duration, and widespread pain. DPMS connectivity was not significantly associated with neuropathic pain or average pain intensity. These findings suggest that FMI scores reflect biologically meaningful changes in brain connectivity, particularly in subcortical DPMS circuits implicated in affective and homeostatic dimensions of pain. Structural connectivity was more strongly associated with FMI than functional measures, possibly reflecting cumulative effects of chronic pain on white matter architecture. The absence of similar associations for other pain outcomes supports the specificity of FMI as a marker of nociplastic pain severity. These results provide a neurobiological basis for the FMI and support its use in population research and biomarker development for nociplastic pain.
Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects
Variability in opioid analgesia has been attributed to many factors. For example, genetic variability of the μ-opioid receptor (MOR)-encoding gene introduces variability in MOR function and endogenous opioid neurotransmission. Emerging evidence suggests that personality trait related to the experience of reward is linked to endogenous opioid neurotransmission. We hypothesized that opioid-induced behavioral analgesia would be predicted by the trait reward responsiveness (RWR) and the response of the brain reward circuitry to noxious stimuli at baseline before opioid administration. In healthy volunteers using functional magnetic resonance imaging and the μ-opioid agonist remifentanil, we found that the magnitude of behavioral opioid analgesia is positively correlated with the trait RWR and predicted by the neuronal response to painful noxious stimuli before infusion in key structures of the reward circuitry, such as the orbitofrontal cortex, nucleus accumbens, and the ventral tegmental area. These findings highlight the role of the brain reward circuitry in the expression of behavioral opioid analgesia. We also show a positive correlation between behavioral opioid analgesia and opioid-induced suppression of neuronal responses to noxious stimuli in key structures of the descending pain modulatory system (amygdala, periaqueductal gray, and rostral–ventromedial medulla), as well as the hippocampus. Further, these activity changes were predicted by the preinfusion period neuronal response to noxious stimuli within the ventral tegmentum. These results support the notion of future imaging-based subject-stratification paradigms that can guide therapeutic decisions.
Neural Correlates of an Injury-Free Model of Central Sensitization Induced by Opioid Withdrawal in Humans
Preclinical evidence suggests that opioid withdrawal induces central sensitization (CS) that is maintained by supraspinal contributions from the descending pain modulatory system (DPMS). Here, in healthy human subjects we use functional magnetic resonance imaging to study the supraspinal activity during the withdrawal period of the opioid remifentanil. We used a crossover design and thermal stimuli on uninjured skin to demonstrate opioid withdrawal-induced hyperalgesia (OIH) without a CS-inducing peripheral stimulus. Saline was used in the control arm to account for effects of time. OIH in this injury-free model was observed in a subset of the healthy subjects (responders). Only in these subjects did opioid infusion and withdrawal induce a rise in activity in the mesencephalic-pontine reticular formation (MPRF), an area of the DPMS that has been previously shown to be involved in states of CS in humans, which became significant during the withdrawal phase compared with nonresponders. Paradoxically, this opioid withdrawal-induced rise in MPRF activity shows a significant negative correlation with the behavioral OIH score indicating a predominant inhibitory role of the MPRF in the responders. These data illustrate that in susceptible individuals central mechanisms appear to regulate the expression of OIH in humans in the absence of tissue injury, which might have relevance for functional pain syndromes where a peripheral origin for the pain is difficult to identify.