Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Metabolism-independent sugar sensing in central orexin neurons.

    24 October 2018

    OBJECTIVE: Glucose sensing by specialized neurons of the hypothalamus is vital for normal energy balance. In many glucose-activated neurons, glucose metabolism is considered a critical step in glucose sensing, but whether glucose-inhibited neurons follow the same strategy is unclear. Orexin/hypocretin neurons of the lateral hypothalamus are widely projecting glucose-inhibited cells essential for normal cognitive arousal and feeding behavior. Here, we used different sugars, energy metabolites, and pharmacological tools to explore the glucose-sensing strategy of orexin cells. RESEARCH DESIGN AND METHODS: We carried out patch-clamp recordings of the electrical activity of individual orexin neurons unambiguously identified by transgenic expression of green fluorescent protein in mouse brain slices. RESULTS- We show that 1) 2-deoxyglucose, a nonmetabolizable glucose analog, mimics the effects of glucose; 2) increasing intracellular energy fuel production with lactate does not reproduce glucose responses; 3) orexin cell glucose sensing is unaffected by glucokinase inhibitors alloxan, d-glucosamine, and N-acetyl-d-glucosamine; and 4) orexin glucosensors detect mannose, d-glucose, and 2-deoxyglucose but not galactose, l-glucose, alpha-methyl-d-glucoside, or fructose. CONCLUSIONS: Our new data suggest that behaviorally critical neurocircuits of the lateral hypothalamus contain glucose detectors that exhibit novel sugar selectivity and can operate independently of glucose metabolism.

  • Tolerance to ingested deamidated gliadin in mice is maintained by splenic, type 1 regulatory T cells.

    24 October 2018

    BACKGROUND & AIMS: Patients with celiac disease have permanent intolerance to gluten. Because of the high frequency of this disorder (approximately 1 in 100 individuals), we investigated whether oral tolerance to gluten differs from that to other food proteins. METHODS: Using transgenic mice that express human HLA-DQ2 and a gliadin-specific, humanized T-cell receptor, we compared gluten-specific T-cell responses with tolerogenic mucosal T-cell responses to the model food protein ovalbumin. RESULTS: Consistent with previous findings, the ovalbumin-specific response occurred in the mesenteric lymph nodes and induced Foxp3(+) regulatory T cells. In contrast, ingestion of deamidated gliadin induced T-cell proliferation predominantly in the spleen but little in mesenteric lymph nodes. The gliadin-reactive T cells had an effector-like phenotype and secreted large amounts of interferon gamma but also secreted interleukin-10. Despite their effector-like phenotype, gliadin-reactive T cells had regulatory functions, because transfer of the cells suppressed a gliadin-induced, delayed-type hypersensitivity response. CONCLUSIONS: Ingestion of deamidated gliadin induces differentiation of tolerogenic, type 1 regulatory T cells in spleens of HLA-DQ2 transgenic mice. These data indicate that under homeostatic conditions, the T-cell response to deamidated gliadin is tolerance, which is not conditioned by the mucosal immune system but instead requires interleukin-10 induction by antigen presentation in the spleen.

  • Synthetic peptides that inhibit binding of the myelin basic protein 85-99 epitope to multiple sclerosis-associated HLA-DR2 molecules and MBP-specific T-cell responses.

    24 October 2018

    Copolymer 1 (Cop 1, poly [Y, E, A, K]) is a random synthetic amino acid copolymer effective in the treatment of relapsing forms of multiple sclerosis (MS), a disease that is linked to HLA-DR2 (DRB1*1501). In the present study various peptides, synthesized according to the binding motifs for both the immunodominant epitope of myelin basic protein (MBP) 85-99, a candidate autoantigen in MS, and Cop 1, differentially inhibited binding of these antigens to disease-associated HLA-DR2 (DRB1*1501) molecules. In particular, two peptides with residue K at position P-1, as referred to MBP 85-99, inhibited effectively the binding of both biotinylated MBP 85-99 and Cop 1 to HLA-DR2 molecules as well as IL-2 production by two MBP-specific HLA-DR2-restricted T-cell clones. These findings suggest the possible utility of these compounds or their more stable derivatives in treatment of MS.

  • From genes to function: the next challenge to understanding multiple sclerosis.

    24 October 2018

    Susceptibility to multiple sclerosis is jointly determined by genetic and environmental factors, and progress has been made in defining some of these genetic associations, as well as their possible interactions with the environment. However, definitive proof for the involvement of specific genetic determinants in the disease will only come from studies that examine their functional roles in disease pathogenesis. New and combined approaches are needed to analyse the complexity of gene regulation and the functional contribution of each genetic determinant to disease susceptibility or pathophysiology. These studies should proceed in parallel with the use of genetically defined human populations to explore how both genetic and environmental factors affect the function of the pathways in individuals with and without disease, and how these determine the inherited risk of multiple sclerosis.

  • Structure of HLA-A*0301 in complex with a peptide of proteolipid protein: insights into the role of HLA-A alleles in susceptibility to multiple sclerosis.

    24 October 2018

    The structure of the human major histocompatability (MHC) class I molecule HLA-A*0301 (HLA-A3) in complex with a nonameric peptide (KLIETYFSK) has been determined by X-ray crystallography to 2.7 Å resolution. HLA-A3 is a predisposing allele for multiple sclerosis (MS), an autoimmune disease of the central nervous system. The KLIETYFSK peptide is a naturally processed epitope of proteolipid protein, a myelin protein and candidate target for immune-mediated myelin destruction in MS. Comparison of the structure of HLA-A3 with that of HLA-A2, an MHC class I molecule which is protective against MS, indicates that both MHC class I molecules present very similar faces for T-cell receptor recognition whilst differing in the specificity of their peptide-binding grooves. These characteristics may underlie the opposing (predisposing versus protective) associations that they exhibit both in humans and in mouse models of MS-like disease. Furthermore, subtle alterations within the peptide-binding groove of HLA-A3 and other A3-like MHC class I molecules, members of the so-called A3 superfamily, may be sufficient to alter their presentation of autoantigen peptides such as KLIETYFSK. This in turn may modulate their contribution to the associated risk of autoimmune disease.

  • The nature of molecular recognition by T cells.

    24 October 2018

    Considerable progress has been made in characterizing four key sets of interactions controlling antigen responsiveness in T cells, involving the following: the T cell antigen receptor, its coreceptors CD4 and CD8, the costimulatory receptors CD28 and CTLA-4, and the accessory molecule CD2. Complementary work has defined the general biophysical properties of interactions between cell surface molecules. Among the major conclusions are that these interactions are structurally heterogeneous, often reflecting clear-cut functional constraints, and that, although they all interact relatively weakly, hierarchical differences in the stabilities of the signaling complexes formed by these molecules may influence the sequence of steps leading to T cell activation. Here we review these developments and highlight the major challenges remaining as the field moves toward formulating quantitative models of T cell recognition.

  • Constitutively active Lck kinase in T cells drives antigen receptor signal transduction.

    24 October 2018

    T cell antigen receptor (TCR) and coreceptor ligation is thought to initiate signal transduction by inducing activation of the kinase Lck. Here we showed that catalytically active Lck was present in unstimulated naive T cells and thymocytes and was readily detectable in these cells in lymphoid organs. In naive T cells up to approximately 40% of total Lck was constitutively activated, part of which was also phosphorylated on the C-terminal inhibitory site. Formation of activated Lck was independent of TCR and coreceptors but required Lck catalytic activity and its maintenance relied on monitoring by the HSP90-CDC37 chaperone complex to avoid degradation. The amount of activated Lck did not change after TCR and coreceptor engagement; however it determined the extent of TCR-zeta phosphorylation. Our findings suggest a dynamic regulation of Lck activity that can be promptly utilized to initiate T cell activation and have implications for signaling by other immune receptors.

  • An alternative conformation of the T-cell receptor alpha constant region.

    24 October 2018

    Alphabeta T-cell receptors (TcRs) play a central role in cellular immune response. They are members of the Ig superfamily, with extracellular regions of the alpha and beta chains each comprising a V-type domain and a C-type domain. We have determined the ectodomain structure of an alphabeta TcR, which recognizes the autoantigen myelin basic protein. The 2.0-A-resolution structure reveals canonical main-chain conformations for the V(alpha), V(beta), and C(beta) domains, but the C(alpha) domain exhibits a main-chain conformation remarkably different from those previously reported for TcR crystal structures. The global IgC-like fold is maintained, but a piston-like rearrangement between BC and DE beta-turns results in beta-strand slippage. This substantial conformational change may represent a signaling intermediate. Our structure is the first example for the Ig fold of the increasingly recognized concept of "metamorphic proteins."

  • Adaptive sugar sensors in hypothalamic feeding circuits.

    24 October 2018

    Brain glucose sensing is critical for healthy energy balance, but how appropriate neurocircuits encode both small changes and large background values of glucose levels is unknown. Here, we report several features of hypothalamic orexin neurons, cells essential for normal wakefulness and feeding: (i) A distinct group of orexin neurons exhibits only transient inhibitory responses to sustained rises in sugar levels; (ii) this sensing strategy involves time-dependent recovery from inhibition via adaptive closure of leak-like K(+) channels; (iii) combining transient and sustained glucosensing allows orexin cell firing to maintain sensitivity to small fluctuations in glucose levels while simultaneously encoding a large range of baseline glucose concentrations. These data provide insights into how vital behavioral orchestrators sense key features of the internal environment while sustaining a basic activity tone required for the stability of consciousness.

  • Control of hypothalamic orexin neurons by acid and CO2.

    24 October 2018

    Hypothalamic orexin/hypocretin neurons recently emerged as key orchestrators of brain states and adaptive behaviors. They are critical for normal stimulation of wakefulness and breathing: Orexin loss causes narcolepsy and compromises vital ventilatory adaptations. However, it is unclear how orexin neurons generate appropriate adjustments in their activity during changes in physiological circumstances. Extracellular levels of acid and CO2 are fundamental physicochemical signals controlling wakefulness and breathing, but their effects on the firing of orexin neurons are unknown. Here we show that the spontaneous firing rate of identified orexin neurons is profoundly affected by physiological fluctuations in ambient levels of H+ and CO2. These responses resemble those of known chemosensory neurons both qualitatively (acidification is excitatory, alkalinization is inhibitory) and quantitatively (approximately 100% change in firing rate per 0.1 unit change in pHe). Evoked firing of orexin cells is similarly modified by physiologically relevant changes in pHe: Acidification increases intrinsic excitability, whereas alkalinization depresses it. The effects of pHe involve acid-induced closure of leak-like K+ channels in the orexin cell membrane. These results suggest a new mechanism of how orexin/hypocretin networks generate homeostatically appropriate firing patterns.