Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In recent years, there has been attention on leveraging the statistical modeling capabilities of neural networks for reconstructing sub-sampled Magnetic Resonance Imaging (MRI) data. Most proposed methods assume the existence of a representative fully-sampled dataset and use fully-supervised training. However, for many applications, fully sampled training data is not available, and may be highly impractical to acquire. The development and understanding of self-supervised methods, which use only sub-sampled data for training, are therefore highly desirable. This work extends the Noisier2Noise framework, which was originally constructed for self-supervised denoising tasks, to variable density sub-sampled MRI data. We use the Noisier2Noise framework to analytically explain the performance of Self-Supervised Learning via Data Undersampling (SSDU), a recently proposed method that performs well in practice but until now lacked theoretical justification. Further, we propose two modifications of SSDU that arise as a consequence of the theoretical developments. Firstly, we propose partitioning the sampling set so that the subsets have the same type of distribution as the original sampling mask. Secondly, we propose a loss weighting that compensates for the sampling and partitioning densities. On the fastMRI dataset we show that these changes significantly improve SSDU's image restoration quality and robustness to the partitioning parameters.

Original publication




Journal article


IEEE Trans Comput Imaging

Publication Date





707 - 720


Deep learning, image reconstruction, magnetic resonance imaging