Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Our research interests range across the neurosciences but with specific interests in circadian, visual and behavioural neuroscience.

Overview

All life on earth has evolved under a rhythmically changing cycle of light and darkness, and organisms from single-celled bacteria up to man possess an internal representation of time.

These 24 hour cycles, termed circadian rhythms, persist in the absence of external cues, and provide a means of anticipating changes in the environment rather than passively responding to them. In mammals, including man, light provides the critical input to the circadian system, synchronising the body clock to prevailing conditions. The photoreceptors providing this input are found in the retina, consisting of the classical rods and cones which enable image-formation, as well as a recently identified subset of photosensitive retinal ganglion cells (pRGCs).

Research

Our research interests range across the neurosciences but with specific interests in circadian, visual and behavioural neuroscience. This covers such topics as how circadian rhythms are generated, the diverse functions these rhythms serve, how this system is regulated by light, the role of classical and novel photoreceptors in both visual and circadian light perception, and genetic disorders of these systems. This work includes a range of molecular, cellular, anatomical and behavioural aspects, as well as addressing the implications for human performance, productivity and health.

Selected publications

Related research themes