Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract We introduce an advanced transcranial ultrasound stimulation (TUS) system for precise deep brain neuromodulation, featuring a 256-element helmet-shaped transducer array (555 kHz), stereotactic positioning, individualised planning, and real-time fMRI monitoring. Experiments demonstrated selective modulation of the lateral geniculate nucleus (LGN) and connected visual cortex regions. Participants showed significantly increased visual cortex activity during concurrent TUS and visual stimulation, with high cross-individual reproducibility. A theta-burst TUS protocol produced robust neuromodulatory effects, decreasing visual cortex activity for at least 40 min post-stimulation. Control experiments confirmed these effects were specific to the targeted LGN. Our findings reveal this system’s potential to non-invasively modulate deep brain circuits with unprecedented precision and specificity, offering new avenues for studying brain function and developing targeted therapies for neurological and psychiatric disorders, with transformative potential for both research and clinical applications.

Original publication

DOI

10.1038/s41467-025-63020-1

Type

Journal article

Journal

Nature Communications

Publisher

Springer Science and Business Media LLC

Publication Date

05/09/2025

Volume

16