Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The neuropathological process in Parkinson's disease (PD) and Lewy body disorders has been shown to extend well beyond the degeneration of the dopaminergic system, affecting other neuromodulatory systems in the brain which play crucial roles in the clinical expression and progression of these disorders. Here, we investigate the role of the macrostructural integrity of the nucleus basalis of Meynert (NbM), the main source of cholinergic input to the cerebral cortex, in cognitive function, clinical manifestation, and disease progression in non-demented subjects with PD and individuals with isolated REM sleep behaviour disorder (iRBD). Using structural MRI data from 393 early PD patients, 128 iRBD patients, and 186 controls from two longitudinal cohorts, we found significantly lower NbM grey matter volume in both PD (β=-12.56, p=0.003) and iRBD (β=-16.41, p=0.004) compared to controls. In PD, higher NbM volume was associated with better higher-order cognitive function (β=0.10, p=0.045), decreased non-motor (β=-0.66, p=0.026) and motor (β=-1.44, p=0.023) symptom burden, and lower risk of future conversion to dementia (Hazard ratio (HR)<0.400, p<0.004). Higher NbM volume in iRBD was associated with decreased future risk of phenoconversion to PD or dementia with Lewy bodies (DLB) (HR<0.490, p<0.016). However, despite similar NbM volume deficits to those seen in PD, associations between NbM structural deficits and current disease burden or clinical state were less pronounced in iRBD. These findings identify NbM volume as a potential biomarker with dual utility: predicting cognitive decline and disease progression in early PD, while also serving as an early indicator of phenoconversion risk in prodromal disease. The presence of structural deficits before clear clinical correlates in iRBD suggests complex compensatory mechanisms may initially mask cholinergic dysfunction, with subsequent failure of these mechanisms potentially contributing to clinical conversion.

Original publication

DOI

10.1093/brain/awaf168

Type

Journal article

Journal

Brain

Publication Date

06/05/2025

Keywords

Lewy body dementia, Parkinson’s disease, REM-sleep behaviour disorder, cholinergic, phenoconversion