Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A collaboration between scientists in the UK and the USA has shown that gene therapy can give life-long protection to the light-sensitive photoreceptor cells responsible for colour vision in a mouse model of the most common inherited eye disorder.

Prevention of retinal degeneration using CNTF gene therapy applied to one eye of a mouse model of retinitis pigmentosa, which also has fluorescent cones that can be counted. At 8 weeks (PW8) both eyes appear similar, but by 30 weeks retinal pigment changes can be seen in the sham injected eye (c) as the degeneration progresses with all cones lost (d). In contrast, the CNTF treated eye (g, h) has a virtually unchanged fundal appearance and over 50% of cones surviving (from Lipinski et al., 2015).
Prevention of retinal degeneration using CNTF gene therapy applied to one eye of a mouse model of retinitis pigmentosa, which also has fluorescent cones that can be counted. At 8 weeks (PW8) both eyes appear similar, but by 30 weeks retinal pigment changes can be seen in the sham injected eye (c) as the degeneration progresses with all cones lost (d). In contrast, the CNTF treated eye (g, h) has a virtually unchanged fundal appearance and over 50% of cones surviving (from Lipinski et al., 2015).

Results published in the journal Molecular Therapy demonstrate that the preserved cells were able to drive visually-guided behaviour, even in later stages of the condition and despite becoming less sensitive to light.

These findings are significant because they open up a new line of research to prevent nerve cell death in retinitis pigmentosa and age-related macular degeneration. They may also have a wider application to neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS).

The research was led by Professor Robert MacLaren at the University of Oxford’s Nuffield Laboratory of Ophthalmology (part of the Nuffield Department of Clinical Neurosciences) and funded in the UK primarily by Fight for Sight, with addition support from the Wellcome Trust, the Health Foundation, the Medical Research Council, the Royal College of Surgeons of Edinburgh, the Oxford Stem Cell Institute and the NIHR Ophthalmology (Moorfields) and Oxford Biomedical Research Centres.

Read more on the University website...

Similar stories

New genetic diagnosis technology for eye disease receives major funding award

Eye2Gene explores the use of AI to determine which genetic condition is causing a patient’s inherited retinal disease, by examining eye scans.

Royal Commission Industrial Fellowship for Andrei-Claudiu Roibu with F. Hoffmann-La Roche Ltd

Mapping brain network activity from structural connectivity using deep learning

Researchers awarded Wellcome Innovator Grant to investigate role of brainstem nucleus in human consciousness

Researchers at Oxford University have received a prestigious Wellcome Innovator Grant for investigating the role of the pedunculopontine nucleus (PPN) – a brainstem nucleus – in human consciousness.

How our dreams changed during the COVID-19 pandemic

This study explored associations between COVID-19 and dream recall frequency, and related social, health, and mental health factors.

New insights into the effect of exposure to dim light in the evening on the biology of the sleep-wake cycle

A new study has revealed more about how exposure to dim light in the evening affects circadian health. The findings emphasise the need to optimise our artificial light exposure if we are to avoid shifting our biological clocks.

Blood lipoprotein levels linked to future risk of amyotrophic lateral sclerosis

Greater understanding of the role of lipoproteins could support screening and efforts to develop treatments.