Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In a laboratory study in Oxford, researchers have shown how it might be possible to reverse blindness using gene therapy to reprogram cells at the back of the eye to become light sensitive.

Long-term expression of human melanopsin (green) and DsRed (red) in remaining cells following gene therapy in end-stage retinal degeneration

Most causes of untreatable blindness occur due to loss of the millions of light sensitive photoreceptor cells that line the retina, similar to the pixels in a digital camera. The remaining retinal nerve cells which are not light sensitive however remain in the eye. Samantha de Silva and colleagues used a viral vector to express a light sensitive protein, melanopsin, in the residual retinal cells in mice which were blind from retinitis pigmentosa, the most common cause of blindness in young people.

There are many blind patients in our clinics and the ability to give them some sight back with a relatively simple genetic procedure is very exciting. Our next step will be to start a clinical trial to assess this in patients.’
- Samantha De Silva, lead author

The mice were monitored for over a year and they maintained vision during this time, being able to recognise objects in their environment which indicated a high level of visual perception. The cells expressing melanopsin were able to respond to light and send visual signals to the brain. The Oxford team has also been trialling an electronic retina successfully in blind patients, but the genetic approach may have advantages in being simpler to administer.

The research was led by Professors Robert MacLaren and Mark Hankins at the Nuffield Laboratory of Ophthalmology in Oxford. 

The full paper, 'Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy', can be read in PNAS.

Similar stories

Major research network to investigate body clock and stroke

The University of Oxford is part of a new international research network to investigate the interactions between the biology of the body's internal clock and the disordered physiological processes associated with stroke.

COVID-19 infection has greater risk than vaccines of causing very rare neurological events

Research reveals risks of developing neurological complications following a positive COVID-19 PCR test, or a first dose of either the Oxford-AstraZeneca or Pfizer-BioNTech COVID-19 vaccinations.

Mapping uncharted networks in the progression of Parkinson’s

A major new $9 million project funded by the Aligning Science Across Parkinson’s (ASAP) initiative will map the original circuits vulnerable to Parkinson’s on an unprecedented scale. The project is a collaboration between a core team of Professors Stephanie Cragg, Richard Wade-Martins, and Peter Magill at Oxford, Dr Mark Howe at Boston University and Professor Dinos Meletis at the Karolinska Institute, as well as collaborators Professor Yulong Li at Peking University and Dr Michael Lin at Stanford University.

New genetic diagnosis technology for eye disease receives major funding award

Eye2Gene explores the use of AI to determine which genetic condition is causing a patient’s inherited retinal disease, by examining eye scans.

Royal Commission Industrial Fellowship for Andrei-Claudiu Roibu with F. Hoffmann-La Roche Ltd

Mapping brain network activity from structural connectivity using deep learning

Researchers awarded Wellcome Innovator Grant to investigate role of brainstem nucleus in human consciousness

Researchers at Oxford University have received a prestigious Wellcome Innovator Grant for investigating the role of the pedunculopontine nucleus (PPN) – a brainstem nucleus – in human consciousness.