Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

One of the hallmarks of Parkinson’s disease (PD) is the presence of abnormal synchronised oscillatory activity within the basal ganglia at certain frequencies. This activity may jam normal communication within brain circuits governing movement, leading to the symptoms of PD. It is unclear however how this activity arises, or how it may be best treated in individual patients.

Ashwini Oswal is a Clinical Lecturer in Neurology affiliated to two of NDCN's divisions: the MRC Brain Network Dynamics Unit and the Division of Clinical Neurology. He and his colleagues have integrated imaging approaches (MRI tractography, magnetoencephalography and invasive recordings) in PD patients undergoing treatment with Deep Brain Stimulation, in an attempt to provide an improved understanding of how abnormal oscillatory synchrony arises in PD. 

Using multimodal imaging and computational models they observed that a direct pathway linking the motor cortex and the basal ganglia (known as the hyperdirect pathway) may be responsible for triggering abnormal synchrony within the basal ganglia in PD.

These findings could allow the development of more intelligent brain stimulation techniques that specifically target the hyperdirect pathway and ameliorate abnormal synchrony within the basal ganglia.  

Image caption: A: visualization of Deep Brain Stimulation electrodes targeting the subthalamic nucleus in Parkinson’s disease (PD) patients. B: Top; white matter tracts passing between cortical areas and the STN in PD (‘hyperdirect pathway’). The green and blue contours represent the supplementary motor area (SMA) and primary motor cortex. Middle; coupling between cortical areas and the STN at high beta band (21-30 Hz) frequencies. Bottom; Regions where high beta band cortico-STN coupling is predicted by anatomical connectivity within the hyperdirect pathway. C: Computational models reveal that high beta band cortical inputs to the STN can trigger the generation of lower beta frequencies which are believed to be pathological.

Read the paper

Similar stories

Developmental dynamics of the neural crest–mesenchymal axis in creating the thymic microenvironment

A new paper from researchers at the Department of Paediatrics and the Nuffield Department of Clinical Neurosciences has shown that fibroblasts in the thymus, often considered simply as dull “structural” cells, are much more complex than previously thought.

Funding awarded for autoimmune disease research

Dr Kate Attfield awarded project funding by Connect Immune Research and The Lorna and Yuti Chernajovsky Biomedical Research Foundation.

Oxford researchers part of major UK initiative to understand chronic pain

Oxford pain researchers are playing a major role in a new multi-million pound research programme launched by a consortium of funders, including UKRI, Versus Arthritis, Eli Lilly and the Medical Research Foundation.

MRC BNDU receives a Wellcome Collaborative Award for Parkinson’s research

We are delighted to announce that the MRC Brain Network Dynamics Unit has received Collaborative Award funding from Wellcome for a substantial multi-year research programme designed to advance the understanding of why dopamine-producing nerve cells are especially vulnerable in Parkinson’s.

Little understood brain region linked to how we perceive pain

A new DPAG-led review paper, published in the journal Brain, has shown that a poorly understood region of the brain called the claustrum may play an important role in how we experience pain.