Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The University has signed an agreement with Dutch medical robotics firm Preceyes to test a robotic vitreoretinal surgical system, using clinical trials led by eye surgeon and researcher Professor Robert MacLaren.

The study will assess the clinical functionality and applicability of the device, focusing on high-precision vitreoretinal surgery - operations which take place at the back of the eye. The aim is for the trial results to facilitate future targeted drug delivery.

Read more on the University of Oxford website...

Similar stories

New genetic diagnosis technology for eye disease receives major funding award

Eye2Gene explores the use of AI to determine which genetic condition is causing a patient’s inherited retinal disease, by examining eye scans.

Royal Commission Industrial Fellowship for Andrei-Claudiu Roibu with F. Hoffmann-La Roche Ltd

Mapping brain network activity from structural connectivity using deep learning

Researchers awarded Wellcome Innovator Grant to investigate role of brainstem nucleus in human consciousness

Researchers at Oxford University have received a prestigious Wellcome Innovator Grant for investigating the role of the pedunculopontine nucleus (PPN) – a brainstem nucleus – in human consciousness.

How our dreams changed during the COVID-19 pandemic

This study explored associations between COVID-19 and dream recall frequency, and related social, health, and mental health factors.

New insights into the effect of exposure to dim light in the evening on the biology of the sleep-wake cycle

A new study has revealed more about how exposure to dim light in the evening affects circadian health. The findings emphasise the need to optimise our artificial light exposure if we are to avoid shifting our biological clocks.

Blood lipoprotein levels linked to future risk of amyotrophic lateral sclerosis

Greater understanding of the role of lipoproteins could support screening and efforts to develop treatments.