Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. METHODS: One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. RESULTS: Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. CONCLUSION: This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.

Original publication

DOI

10.1002/brb3.457

Type

Journal article

Journal

Brain Behav

Publication Date

04/2016

Volume

6

Keywords

Basal ganglia volume, cerebellar anatomy, cortical anatomy, hippocampal anatomy, magnetic resonance imaging, pediatric neuroanatomical development, typically developing children, Adolescent, Adolescent Development, Age Factors, Basal Ganglia, Cerebellum, Cerebral Cortex, Child, Child Development, Child, Preschool, Hippocampus, Humans, Magnetic Resonance Imaging, Male, Thalamus