Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Murine models of Alzheimer's disease (AD) have been used to draw associations between atrophy of neural tissue and underlying pathology. In this study, the early-onset TgCRND8 mouse model of AD and littermate controls were scanned longitudinally with in vivo manganese-enhanced MRI (MEMRI) before and after the onset of amyloid plaque deposition at 12 weeks of age. Separate cohorts of mice were scanned at 1 week (ex vivo imaging) and 4 weeks (MEMRI) of age to investigate early life alterations in the brain. Contrary to our expectations, differences in neuroanatomy were found in early post-natal life, preceding plaque deposition by as much as 11 weeks. Many of these differences remained at all imaging time points, suggesting that they were programmed early in life and were unaffected by the onset of pathology. Furthermore, rather than showing atrophy, many regions of the TgCRND8 brain grew at a faster rate compared to controls. These regions contained the greatest density of amyloid plaques and reactive astrocytes. Our findings suggest that pathological processes as well as an alteration in brain development influence the TgCRND8 neuroanatomy throughout the lifespan.

Original publication

DOI

10.1016/j.neurobiolaging.2014.08.032

Type

Journal article

Journal

Neurobiol Aging

Publication Date

02/2015

Volume

36

Pages

638 - 647

Keywords

Brain development, Longitudinal magnetic resonance imaging, Mouse models of Alzheimer's disease, Neuroanatomy, Aging, Alzheimer Disease, Animals, Atrophy, Brain, Disease Models, Animal, Magnetic Resonance Imaging, Mice, Transgenic, Plaque, Amyloid