Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The healthy adult brain demonstrates robust learning-induced neuroanatomical plasticity. While altered neuroanatomical plasticity is suspected to be a factor mitigating the progressive cognitive decline in Alzheimer's disease (AD), it is not known to what extent this plasticity is affected by AD. We evaluated whether spatial learning and memory-induced neuroanatomical plasticity are diminished in an adult mouse model of AD (APP mice) featuring amyloid beta-driven cognitive and cerebrovascular dysfunction. We also evaluated the effect of early, long-term pioglitazone-treatment on functional hyperemia, spatial learning and memory, and associated neuroanatomical plasticity. Using high-resolution post-mortem MRI and deformation-based morphometry, we demonstrate spatial learning and memory-induced focal volume increase in the hippocampus of wild-type mice, an effect that was severely attenuated in APP mice, consistent with their unsuccessful performance in the spatial Morris water maze. These findings implicate impaired neuroanatomical plasticity as an important contributing factor to cognitive deficits in the APP mouse model of AD. Pioglitazone- treatment in APP mice completely rescued functional hyperemia and exerted beneficial effects on spatial learning and memory-recall, but it did not improve hippocampal plasticity. © 2013. Published by The Author. All rights reserved.

Original publication

DOI

10.1016/j.nicl.2013.08.017

Type

Journal article

Journal

NeuroImage: Clinical

Publication Date

07/10/2013

Volume

3

Pages

290 - 300