Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Multiple sclerosis (MS) is thought to predominantly affect white matter (WM). Recently, however, loss of cortical gray matter has also been described. Little is known about the cause of cortical atrophy in MS, whether it occurs early in the disease course, and whether it affects all cortical regions equally or if there is a preferential pattern of focal cortical atrophy. An automated method was used to compute the thickness at every vertex of the cortical surface of the brains of 425 early relapsing-remitting MS patients. We correlated cortical thickness with the WM lesion load and the Expanded Disability Status Scale score. Mean cortical thickness correlated with WM lesion load and disability. The correlations of cortical thickness with total lesion load and disability were most significant in cingulate gyrus, insula, and associative cortical regions. Conversely, primary sensory, visual, and motor areas showed a less significant relationship. The highest amount of atrophy per lesion volume or disability scale unit was in the anterior cingulate cortex. This study confirms the relation between cortical atrophy, WM lesion load, and disability in MS, and suggests that cortical atrophy occurs even in MS patients with only mild disability. Most interestingly, we show a specific regional pattern of focal atrophy in MS that is distinctively different from the one in normal aging. The predilection of the atrophic process for areas that are heavily inter-connected with other brain regions suggests that interruption of WM tracts by MS plaques contributes, at least in part, to the development of cortical atrophy.

Original publication




Journal article



Publication Date





509 - 517


Aged, Atrophy, Cerebral Cortex, Female, History, 16th Century, Humans, Image Interpretation, Computer-Assisted, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Multiple Sclerosis