Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Changes in brain structure occur in remote regions following focal damage such as stroke. Such changes could disrupt processing of information across widely distributed brain networks. We used diffusion MRI tractography to assess connectivity between brain regions in 9 chronic stroke patients and 18 age-matched controls. We applied complex network analysis to calculate 'communicability', a measure of the ease with which information can travel across a network. Clustering individuals based on communicability separated patient and control groups, not only in the lesioned hemisphere but also in the contralesional hemisphere, despite the absence of gross structural pathology in the latter. In our highly selected patient group, lesions were localised to the left basal ganglia/internal capsule. We found reduced communicability in patients in regions surrounding the lesions in the affected hemisphere. In addition, communicability was reduced in homologous locations in the contralesional hemisphere for a subset of these regions. We interpret this as evidence for secondary degeneration of fibre pathways which occurs in remote regions interconnected, directly or indirectly, with the area of primary damage. We also identified regions with increased communicability in patients that could represent adaptive, plastic changes post-stroke. Network analysis provides new and powerful tools for understanding subtle changes in interactions across widely distributed brain networks following stroke.

Original publication

DOI

10.1016/j.neuroimage.2010.08.032

Type

Journal article

Journal

Neuroimage

Publication Date

01/01/2011

Volume

54

Pages

161 - 169

Keywords

Adult, Aged, Aged, 80 and over, Brain, Chronic Disease, Communication, Communication Disorders, Female, Functional Laterality, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Nerve Net, Reference Values, Stroke