Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neurofeedback (NF) is a research and clinical technique, characterized by live demonstration of brain activation to the subject. The technique has become increasingly popular as a tool for the training of brain self-regulation, fueled by the superiority in spatial resolution and fidelity brought along with real-time analysis of fMRI (functional magnetic resonance imaging) data, compared to the more traditional EEG (electroencephalography) approach. NF learning is a complex phenomenon and a controversial discussion on its feasibility and mechanisms has arisen in the literature. Critical aspects of the design of fMRI-NF studies include the localization of neural targets, cognitive and operant aspects of the training procedure, personalization of training, and the definition of training success, both through neural effects and (for studies with therapeutic aims) through clinical effects. In this paper, we argue that a developmental perspective should inform neural target selection particularly for pediatric populations, and different success metrics may allow in-depth analysis of NF learning. The relevance of the functional neuroanatomy of NF learning for brain target selection is discussed. Furthermore, we address controversial topics such as the role of strategy instructions, sometimes given to subjects in order to facilitate learning, and the timing of feedback. Discussion of these topics opens sight on problems that require further conceptual and empirical work, in order to improve the impact that fMRI-NF could have on basic and applied research in future.

Original publication

DOI

10.1016/j.neuroimage.2019.116107

Type

Journal article

Journal

Neuroimage

Publication Date

15/11/2019

Volume

202

Keywords

BCI, Developmental cognitive neuroscience, Multivariate pattern analysis, Neurofeedback, Real-time fMRI, Review, Translational research, Brain, Brain Mapping, Humans, Magnetic Resonance Imaging, Neurofeedback