Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Reinforcement learning theories propose that humans choose based on the estimated values of available options, and that they learn from rewards by reducing the difference between the experienced and expected value. In the brain, such prediction errors are broadcasted by dopamine. However, choices are not only influenced by expected value, but also by risk. Like reinforcement learning, risk preferences are modulated by dopamine: enhanced dopamine levels induce risk-seeking. Learning and risk preferences have so far been studied independently, even though it is commonly assumed that they are (partly) regulated by the same neurotransmitter. Here, we use a novel learning task to look for prediction-error induced risk-seeking in human behavior and pupil responses. We find that prediction errors are positively correlated with risk-preferences in imminent choices. Physiologically, this effect is indexed by pupil dilation: only participants whose pupil response indicates that they experienced the prediction error also show the behavioral effect.

Original publication




Journal article

Publication Date