Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2009-2012 IEEE. The total economic cost of neurological disorders exceeds £100 billion per annum in the United Kingdom alone, yet pharmaceutical companies continue to cut investments due to failed clinical studies and risk [1]. These challenges motivate an alternative to solely pharmacological treatments. The emerging field of bioelectronics suggests a novel alternative to pharmaceutical intervention that uses electronic hardware to directly stimulate the nervous system with physiologically inspired electrical signals [2]. Given the processing capability of electronics and precise targeting of electrodes, the potential advantages of bioelectronics include specificity in the time, method, and location of treatment, with the ability to iteratively refine and update therapy algorithms in software [3]. A primary disadvantage of the current systems is invasiveness due to surgical implantation of the device.

Original publication

DOI

10.1109/MSSC.2020.2987506

Type

Journal article

Journal

IEEE Solid-State Circuits Magazine

Publication Date

01/03/2020

Volume

12

Pages

30 - 46