Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: The Oxford Parkinson's Disease Centre (OPDC) Discovery Cohort MRI substudy (OPDC-MRI) collects high-quality multimodal brain MRI together with deep longitudinal clinical phenotyping in patients with Parkinson's, at-risk individuals and healthy elderly participants. The primary aim is to detect pathological changes in brain structure and function, and develop, together with the clinical data, biomarkers to stratify, predict and chart progression in early-stage Parkinson's and at-risk individuals. PARTICIPANTS: Participants are recruited from the OPDC Discovery Cohort, a prospective, longitudinal study. Baseline MRI data are currently available for 290 participants: 119 patients with early idiopathic Parkinson's, 15 Parkinson's patients with pathogenic mutations of the leucine-rich repeat kinase 2 or glucocerebrosidase (GBA) genes, 68 healthy controls and 87 individuals at risk of Parkinson's (asymptomatic carriers of GBA mutation and patients with idiopathic rapid eye movement sleep behaviour disorder-RBD). FINDINGS TO DATE: Differences in brain structure in early Parkinson's were found to be subtle, with small changes in the shape of the globus pallidus and evidence of alterations in microstructural integrity in the prefrontal cortex that correlated with performance on executive function tests. Brain function, as assayed with resting fMRI yielded more substantial differences, with basal ganglia connectivity reduced in early Parkinson'sand RBD. Imaging of the substantia nigra with the more recent adoption of sequences sensitive to iron and neuromelanin content shows promising results in identifying early signs of Parkinsonian disease. FUTURE PLANS: Ongoing studies include the integration of multimodal MRI measures to improve discrimination power. Follow-up clinical data are now accumulating and will allow us to correlate baseline imaging measures to clinical disease progression. Follow-up MRI scanning started in 2015 and is currently ongoing, providing the opportunity for future longitudinal imaging analyses with parallel clinical phenotyping.

Original publication

DOI

10.1136/bmjopen-2019-034110

Type

Journal article

Journal

BMJ Open

Publication Date

13/08/2020

Volume

10

Keywords

REM sleep behavior disorder, cohort studies, magnetic resonance imaging, parkinson-s disease