Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Objective Multiverse analysis provides an ideal tool for understanding how inherent, yet ultimately arbitrary methodological choices impact the conclusions of individual studies. With this investigation we aimed to demonstrate the utility of multiverse analysis for evaluating generalisability and identifying potential sources of bias within studies employing neurological populations. Method Multiverse analysis was used to evaluate the robustness of the relationship between post-stroke visuospatial neglect and poor long term recovery outcome within a sample of 1113 (age =72.5, 45.1% female) stroke survivors. A total of 25,600 t-test comparisons were run across 400 different patient groups defined using various combinations of valid inclusion criteria based on lesion location, stroke type, assessment time, neglect impairment definition, and scoring criteria across 16 standardised outcome measures. Results Overall, 33.9% of conducted comparisons yielded significant results. 99.9% of these significant results fell below the null specification curve, indicating a highly robust relationship between neglect and poor recovery outcome. However, the strength of this effect was not constant across all comparison groups. Comparisons which included <100 participants, pre-selected patients based on lesion type, or failed to account for allocentric neglect impairment were found to yield average effect sizes which differed substantially. Similarly, average effect sizes differed across various outcome measures with the strongest average effect in comparisons involving an activities of daily living measure and the weakest in comparisons employing a depression subscale. Conclusions This investigation demonstrates the utility of multiverse analysis techniques for evaluating effect robustness and identifying potential sources of bias within neurological research.

Original publication




Journal article

Publication Date