Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The ability to accurately determine the dose of an adeno-associated viral (AAV) therapeutic vector is critical to the gene therapy process. Quantitative PCR (qPCR) is one of the common methods to quantify the AAV vector titre, but different variables can lead to inconsistent results. The aim of this study was to analyze the influence of the conformation of the DNA used as the standard control, and the enzymatic digestion was performed to release the viral genome from the protein capsid on the physical genome titration of a clinically relevant AAV8.RPGR vector, made to good laboratory practice standards in an academic setting. The results of this study showed that the conformation of the DNA used as standard has a significant impact on the accuracy of absolute quantification by qPCR. The use of supercoiled undigested plasmid DNA template generated a higher apparent titer, as compared to the use of linearized plasmid as the standard. In contrast to previous studies, the pre-treatment of the samples with Proteinase K, in addition to the high temperature step used after DNase I digestion, resulted in a reduction on AAV titers. Ideally, all AAV documentation should state which form of reference plasmid and which pre-treatment of the samples have been used to calculate titers, so that appropriate comparisons relating to dose toxicity and transduction efficacy can be made in the clinical scenario.

Original publication

DOI

10.3390/genes12040601

Type

Journal article

Journal

Genes

Publisher

MDPI AG

Publication Date

19/04/2021

Volume

12

Pages

601 - 601