Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Brain age prediction from brain MRI scans not only helps improve brain ageing modelling generally, but also provides benchmarks for predictive analysis methods. Brain-age delta, which is the difference between a subject's predicted age and true age, has become a meaningful biomarker for the health of the brain. Here, we report the details of our brain age prediction models and results in the Predictive Analysis Challenge 2019. The aim of the challenge was to use T1-weighted brain MRIs to predict a subject's age in multicentre datasets. We apply a lightweight deep convolutional neural network architecture, Simple Fully Convolutional Neural Network (SFCN), and combined several techniques including data augmentation, transfer learning, model ensemble, and bias correction for brain age prediction. The model achieved first place in both of the two objectives in the PAC 2019 brain age prediction challenge: Mean absolute error (MAE) = 2.90 years without bias removal (Second Place = 3.09 yrs; Third Place = 3.33 yrs), and MAE = 2.95 years with bias removal, leading by a large margin (Second Place = 3.80 yrs; Third Place = 3.92 yrs).

Original publication

DOI

10.3389/fpsyt.2021.627996

Type

Journal article

Journal

Front Psychiatry

Publication Date

2021

Volume

12

Keywords

big data, brain age prediction, brain imaging, convolution neural network, deep learning, predictive analysis