Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Background The standard of care in general wards includes periodic manual measurements, with the data entered into track-and-trigger charts, either on paper or electronically. Wearable devices may support health care staff, improve patient safety, and promote early deterioration detection in the interval between periodic measurements. However, regulatory standards for ambulatory cardiac monitors estimating heart rate (HR) and respiratory rate (RR) do not specify performance criteria during patient movement or clinical conditions in which the patient’s oxygen saturation varies. Therefore, further validation is required before clinical implementation and deployment of any wearable system that provides continuous vital sign measurements. Objective The objective of this study is to determine the agreement between a chest-worn patch (VitalPatch) and a gold standard reference device for HR and RR measurements during movement and gradual desaturation (modeling a hypoxic episode) in a controlled environment. Methods After the VitalPatch and gold standard devices (Philips MX450) were applied, participants performed different movements in seven consecutive stages: at rest, sit-to-stand, tapping, rubbing, drinking, turning pages, and using a tablet. Hypoxia was then induced, and the participants’ oxygen saturation gradually reduced to 80% in a controlled environment. The primary outcome measure was accuracy, defined as the mean absolute error (MAE) of the VitalPatch estimates when compared with HR and RR gold standards (3-lead electrocardiography and capnography, respectively). We defined these as clinically acceptable if the rates were within 5 beats per minute for HR and 3 respirations per minute (rpm) for RR. Results Complete data sets were acquired for 29 participants. In the movement phase, the HR estimates were within prespecified limits for all movements. For RR, estimates were also within the acceptable range, with the exception of the sit-to-stand and turning page movements, showing an MAE of 3.05 (95% CI 2.48-3.58) rpm and 3.45 (95% CI 2.71-4.11) rpm, respectively. For the hypoxia phase, both HR and RR estimates were within limits, with an overall MAE of 0.72 (95% CI 0.66-0.78) beats per minute and 1.89 (95% CI 1.75-2.03) rpm, respectively. There were no significant differences in the accuracy of HR and RR estimations between normoxia (≥90%), mild (89.9%-85%), and severe hypoxia (<85%). Conclusions The VitalPatch was highly accurate throughout both the movement and hypoxia phases of the study, except for RR estimation during the two types of movements. This study demonstrated that VitalPatch can be safely tested in clinical environments to support earlier detection of cardiorespiratory deterioration. Trial Registration ISRCTN Registry ISRCTN61535692; https://www.isrctn.com/ISRCTN61535692

Original publication

DOI

10.2196/27547

Type

Journal article

Journal

Journal of Medical Internet Research

Publisher

JMIR Publications Inc.

Publication Date

15/09/2021

Volume

23

Pages

e27547 - e27547