Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractSubarachnoid haemorrhage (SAH) is associated with long-term disability, serious reduction in quality of life and significant mortality. Early brain injury (EBI) refers to the pathological changes in cerebral metabolism and blood flow that happen in the first few days after ictus and may lead on to delayed cerebral ischaemia (DCI). A disruption of the nitric oxide (NO) pathway is hypothesised as a key mechanism underlying EBI. A decrease in the alpha-delta power ratio (ADR) of the electroencephalogram has been related to cerebral ischaemia. In an experimental medicine study, we tested the hypothesis that intravenous sodium nitrite, an NO donor, would lead to increases in ADR. We studied 33 patients with acute aneurysmal SAH in the EBI phase. Participants were randomised to either sodium nitrite or saline infusion for 1 h. EEG measurements were taken before the start of and during the infusion. Twenty-eight patients did not develop DCI and five patients developed DCI. In the patients who did not develop DCI, we found an increase in ADR during sodium nitrite versus saline infusion. In the five patients who developed DCI, we did not observe a consistent pattern of ADR changes. We suggest that ADR power changes in response to nitrite infusion reflect a NO-mediated reduction in cerebral ischaemia and increase in perfusion, adding further evidence to the role of the NO pathway in EBI after SAH. Our findings provide the basis for future clinical trials employing NO donors after SAH.

Original publication




Journal article


Translational Stroke Research


Springer Science and Business Media LLC

Publication Date





265 - 275