Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In 2019, the scientists who discovered how cells sense and adapt to oxygen availability were awarded the Nobel Prize. This elegant sensing pathway is conserved throughout evolution, and it underpins the physiology and pathology that we, as clinicians in anaesthesia and critical care, encounter on a daily basis. The purpose of this review is to bring hypoxia-inducible factor, and the oxygen-sensing pathway as a whole, to the wider clinical community. We describe how this unifying mechanism was discovered, and how it orchestrates diverse changes such as erythropoiesis, ventilatory acclimatisation, pulmonary vascular remodelling and altered metabolism. We explore the lessons learnt from genetic disorders of oxygen sensing, and the wider implications in evolution of all animal species, including our own. Finally, we explain how this pathway is relevant to our clinical practice, and how it is being manipulated in new treatments for conditions such as cancer, anaemia and pulmonary hypertension.

Original publication




Journal article



Publication Date



HIF, anaesthesia, critical care, hypoxia, hypoxia-inducible factor