Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Finetech-Brindley Sacral Anterior Root Stimulator (SARS) is a low cost and reliable system. The architecture has been used for various bioelectric treatments, including several thousand implanted systems for restoring bladder function following spinal cord injury (SCI). Extending the operational frequency range would expand the capability of the system; enabling, for example, the exploration of eliminating the rhizotomy through an electrical nerve block. The distributed architecture of the SARS system enables stimulation parameters to be adjusted without modifying the implant design or manufacturing. To explore the design degrees-of-freedom, a circuit simulation was created and validated using a modified SARS system that supported stimulation frequencies up to 600 Hz. The simulation was also used to explore high frequency (up to 30kHz) behaviour, and to determine the constraints on charge delivered at the higher rates. A key constraint found was the DC blocking capacitors, designed originally for low frequency operation, not fully discharging within a shortened stimulation period. Within these current implant constraints, we demonstrate the potential capability for higher frequency operation that is consistent with presynaptic stimulation block, and also define targeted circuit improvements for future extension of stimulation capability.

Original publication

DOI

10.1109/embc46164.2021.9630995

Type

Journal article

Journal

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference

Publication Date

01/11/2021

Volume

2021

Pages

6406 - 6411

Keywords

Humans, Rhizotomy, Spinal Cord Injuries