Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the real-world setting, there is suboptimal compliance with treatments that require frequent administration and assessment visits. This undertreatment frequently has negative consequences in eye disease and carries a real risk to vision. For example, patients with glaucoma risk progression of visual loss even with a small number of missed doses, and patients with neovascular age-related degeneration (nAMD) who fail to attend a bi-monthly clinic appointment to receive an intravitreal anti-vascular endothelial growth factor (VEGF) drug injections may lose the initial vision gains in vision. Protracted regular treatment schedules represent a high burden not only for patients and families, but also healthcare professionals, systems, and ultimately society too. There has been a clear need for longer-acting therapies that reduce the frequency, and therefore the burden, of treatment interventions. Several longer-acting interventions for nAMD, diabetic macular oedema, retinal vein occlusion, uveitis and glaucoma have either been developed or are in late-phase development, some of which employ novel mechanisms of actions, and all of which of promise longer (≥3 month) treatment intervals. This review delivers an overview of anti-VEGF agents with longer durations of action, DARPins, bispecific anti-VEGF/Ang2 therapies, anti-PDGF and anti-integrin therapy, Rho-kinase inhibitors, the Port Delivery System, steroids, gene therapy for retina and uveitis, and for glaucoma, ROCK inhibitors, implants and plugs, and SLT laser and MIGS. The review also refers to the potential of artificial intelligence to tailor treatment efficacy with a resulting reduction in treatment burden.

Original publication

DOI

10.1038/s41433-021-01766-w

Type

Journal article

Journal

Eye (Lond)

Publication Date

06/2022

Volume

36

Pages

1154 - 1167

Keywords

Angiogenesis Inhibitors, Artificial Intelligence, Bevacizumab, Glaucoma, Humans, Intravitreal Injections, Macular Edema, Ranibizumab, Uveitis, Vascular Endothelial Growth Factor A, Visual Acuity