Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The direction of applied electric current relative to the cortical surface is a key determinant of transcranial direct current stimulation (tDCS) effects. Inter-individual differences in anatomy affect the consistency of current direction at a cortical target. However, the degree of this variability remains undetermined. Using current flow modelling (CFM), we quantified the inter-individual variability in tDCS current direction at a cortical target (left primary motor cortex, M1). Three montages targeting M1 using circular electrodes were compared: PA-tDCS directed current perpendicular to the central sulcus in a posterior-anterior direction relative to M1, ML-tDCS directed current parallel to the central sulcus in a medio-lateral direction, and conventional-tDCS applied electrodes over M1 and the contralateral forehead. In 50 healthy brain scans from the Human Connectome Project, we extracted current direction and intensity from the grey matter surface in the sulcal bank (M1BANK) and gyral crown (M1CROWN), and neighbouring primary somatosensory cortex (S1BANK and S1CROWN). Results confirmed substantial inter-individual variability in current direction (50%-150%) across all montages. Radial inward current produced by PA-tDCS was predominantly located in M1BANK, whereas for conventional-tDCS it was clustered in M1CROWN. The difference in radial inward current in functionally distinct subregions of M1 raises the testable hypothesis that PA-tDCS and conventional-tDCS modulate cortical excitability through different mechanisms. We show that electrode locations can be used to closely approximate current direction in M1 and precentral gyrus, providing a landmark-based method for tDCS application to address the hypothesis without the need for MRI. By contrast, ML-tDCS current was more tangentially orientated, which is associated with weaker somatic polarisation. Substantial inter-individual variability in current direction likely contributes to variable neuromodulation effects reported for these protocols, emphasising the need for individualised electrode montages, including the control of current direction.

Original publication




Journal article



Publication Date





Brain stimulation, Current flow modelling, Inter-individual variability, Transcranial electrical stimulation, Cortical Excitability, Electrodes, Evoked Potentials, Motor, Humans, Magnetic Resonance Imaging, Motor Cortex, Transcranial Direct Current Stimulation