Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Growth-associated protein 43 (GAP-43) has long been used as a marker for nerve regeneration following nerve injury, with numerous in vitro and animal studies showing its upregulation in regenerating neurons. In humans, expression of GAP-43 has predominantly been examined in skin biopsies from patients with peripheral neuropathies; with several studies showing a reduction in GAP-43 immunoreactive cutaneous nerve fibres. However, it remains elusive whether cutaneous GAP-43 is a valid marker for human nerve regeneration. Here, we present a cohort of 22 patients with electrodiagnostically confirmed carpal tunnel syndrome (CTS), used as a model system for focal nerve injury and neural regeneration after decompression surgery. We evaluate GAP-43 immunoreactivity and RNA expression levels in finger skin biopsies taken before and 6 months after surgery, relative to healthy controls. We further classify patients as ‘regenerators’ or ‘non-regenerators’ based on post-surgical epidermal re-innervation. We demonstrate that patients with CTS have lower GAP-43 positive intra-epidermal nerve fibre density (IENFD) before surgery than healthy controls. However, this difference disappears when normalising for total IENFD. Of note, we found surgery did not change GAP-43 expression in IENF, with no differences both in patients who were classified as regenerators and non-regenerators. We also did not identify pre-post surgical differences in cutaneous GAP-43 gene expression or associations with regeneration. These findings suggest cutaneous GAP-43 may not be a compelling marker for nerve regeneration in humans.

Original publication




Journal article




Public Library of Science (PLoS)

Publication Date





e0277133 - e0277133