Clinical and MRI measures to identify non-acute MOG-antibody disease in adults.
Cortese R., Battaglini M., Prados F., Bianchi A., Haider L., Jacob A., Palace J., Messina S., Paul F., Wuerfel J., Marignier R., Durand-Dubief F., de Medeiros Rimkus C., Callegaro D., Sato DK., Filippi M., Rocca MA., Cacciaguerra L., Rovira A., Sastre-Garriga J., Arrambide G., Liu Y., Duan Y., Gasperini C., Tortorella C., Ruggieri S., Amato MP., Ulivelli M., Groppa S., Grothe M., Llufriu S., Sepulveda M., Lukas C., Bellenberg B., Schneider R., Sowa P., Celius EG., Proebstel A-K., Yaldizli Ö., Müller J., Stankoff B., Bodini B., Carmisciano L., Sormani MP., Barkhof F., De Stefano N., Ciccarelli O., MAGNIMS Study Group None.
MRI and clinical features of myelin oligodendrocyte glycoprotein (MOG)-antibody disease may overlap with those of other inflammatory demyelinating conditions posing diagnostic challenges, especially in non-acute phases and when serologic testing for MOG antibodies is unavailable or shows uncertain results. We aimed to identify MRI and clinical markers that differentiate non-acute MOG-antibody disease from aquaporin 4 (AQP4)-antibody neuromyelitis optica spectrum disorder and relapsing remitting multiple sclerosis, guiding in the identification of patients with MOG-antibody disease in clinical practice. In this cross-sectional retrospective study, data from 16 MAGNIMS centres were included. Data collection and analyses were conducted from 2019 to 2021. Inclusion criteria were: diagnosis of MOG-antibody disease; AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis; brain and cord MRI at least 6 months from relapse; and Expanded Disability Status Scale (EDSS) score on the day of MRI. Brain white matter T2 lesions, T1-hypointense lesions, cortical and cord lesions were identified. Random forest models were constructed to classify patients as MOG-antibody disease/AQP4-neuromyelitis optica spectrum disorder/multiple sclerosis; a leave one out cross-validation procedure assessed the performance of the models. Based on the best discriminators between diseases, we proposed a guide to target investigations for MOG-antibody disease. One hundred and sixty-two patients with MOG-antibody disease [99 females, mean age: 41 (±14) years, median EDSS: 2 (0-7.5)], 162 with AQP4-neuromyelitis optica spectrum disorder [132 females, mean age: 51 (±14) years, median EDSS: 3.5 (0-8)], 189 with multiple sclerosis (132 females, mean age: 40 (±10) years, median EDSS: 2 (0-8)] and 152 healthy controls (91 females) were studied. In young patients (<34 years), with low disability (EDSS < 3), the absence of Dawson's fingers, temporal lobe lesions and longitudinally extensive lesions in the cervical cord pointed towards a diagnosis of MOG-antibody disease instead of the other two diseases (accuracy: 76%, sensitivity: 81%, specificity: 84%, P < 0.001). In these non-acute patients, the number of brain lesions < 6 predicted MOG-antibody disease versus multiple sclerosis (accuracy: 83%, sensitivity: 82%, specificity: 83%, P < 0.001). An EDSS < 3 and the absence of longitudinally extensive lesions in the cervical cord predicted MOG-antibody disease versus AQP4-neuromyelitis optica spectrum disorder (accuracy: 76%, sensitivity: 89%, specificity: 62%, P < 0.001). A workflow with sequential tests and supporting features is proposed to guide better identification of patients with MOG-antibody disease. Adult patients with non-acute MOG-antibody disease showed distinctive clinical and MRI features when compared to AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis. A careful inspection of the morphology of brain and cord lesions together with clinical information can guide further analyses towards the diagnosis of MOG-antibody disease in clinical practice.