Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background and ObjectivesThrombosis is central to the pathogenesis of acute ischemic stroke, with higher thrombin generation being associated with increased stroke risk. The immune system may contribute to thrombin generation in stroke and thus may offer novel strategies for stroke prevention. This study addresses the research question regarding the relationship of thrombin generation to leukocyte gene expression in patients with acute ischemic stroke.MethodsWe isolated RNA from whole blood and examined the relationship to thrombin generation capacity in patients with acute ischemic stroke. Due to its effects on thrombin generation, patients on anticoagulants were excluded from the study. The relationship of gene expression with peak thrombin was evaluated by analysis of covariance across peak thrombin quartiles adjusted for sex and age.ResultsIn 97 patients with acute ischemic stroke, peak thrombin was variable, ranging from 252.0 to 752.4 nM. Increased peak thrombin was associated with differences in thromboinflammatory leukocyte gene expression, including a decrease in ADAM metallopeptidase with thrombospondin type 1 motif 13 and an increase in nuclear factor κB (NF-κB)–activating protein, protein disulfide isomerase family A member 5, and tissue factor pathway inhibitor 2. Pathways associated with peak thrombin included interleukin 6 signaling, thrombin signaling, and NF-κB signaling. A linear discriminant analysis model summarizing the immune activation associated with peak thrombin in a first cohort of stroke could distinguish patients with low peak thrombin from high peak thrombin in a second cohort of 112 patients with acute ischemic stroke.DiscussionThe identified genes and pathways support a role of the immune system contributing to thrombus formation in patients with stroke. These may have relevance to antithrombotic strategies for stroke prevention.

Original publication

DOI

10.1212/wnl.0000000000200909

Type

Journal article

Journal

Neurology

Publisher

Ovid Technologies (Wolters Kluwer Health)

Publication Date

27/09/2022

Volume

99

Pages

e1356 - e1363