Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: While there is good evidence that reward learning is underpinned by two distinct decision control systems – a cognitive ‘model-based’ and a habitbased ‘model-free’ system, a comparable distinction for punishment avoidance has been much less clear. Methods: We implemented a pain avoidance task that placed differential emphasis on putative model-based and model-free processing, mirroring a paradigm and modelling approach recently developed for reward-based decision-making. Subjects performed a two-step decision-making task with probabilistic pain outcomes of different quantities. The delivery of outcomes was sometimes contingent on a rule signalled at the beginning of each trial, emulating a form of outcome devaluation. Results: The behavioural data showed that subjects tended to use a mixed strategy – favouring the simpler model-free learning strategy when outcomes did not depend on the rule, and favouring a model-based when they did. Furthermore, the data were well described by a dynamic transition model between the two controllers. When compared with data from a reward-based task (albeit tested in the context of the scanner), we observed that avoidance involved a significantly greater tendency for subjects to switch between model-free and model-based systems in the face of changes in uncertainty. Conclusion: Our study suggests a dual-system model of pain avoidance, similar to but possibly more dynamically flexible than reward-based decision-making.

Original publication

DOI

10.1177/2398212818772964

Type

Journal article

Journal

Brain and Neuroscience Advances

Publisher

SAGE Publications

Publication Date

01/01/2018

Volume

2

Pages

239821281877296 - 239821281877296