Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Object The pedunculopontine nucleus (PPN) region of the brainstem has become a new stimulation target for the treatment of gait freezing, akinesia, and postural instability in advanced Parkinson disease (PD). Because PD locomotor symptoms are probably caused by excessive γ-aminobutyric acidergic inhibition of the PPN, low-frequency stimulation of the PPN may overcome this inhibition and improve the symptoms. However, the anatomical connections of this region in humans are not known in any detail. Methods Diffusion weighted magnetic resonance (MR) images were acquired at 1.5 teslas, and probabilistic tractography was used to trace the connections of the PPN region in eight healthy volunteers. A single seed voxel (2 × 2 × 2 mm) was chosen in the PPN just lateral to the decussation of the superior cerebellar peduncle, and the Diffusion Toolbox of the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain was used to process the acquired MR images. The connections of each volunteer's PPN region were analyzed using a human brain MR imaging atlas. Results The PPN region was connected with the cerebellum and spinal cord below and to the thalamus, pallidum, subthalamic nucleus, and motor cortex above. The regions of the primary motor cortex that control the trunk and upper and lower extremities had the highest connectivity compared with other parts of motor cortex. Conclusions These findings suggest that connections of the PPN region with the primary motor cortex, basal ganglia, thalamus, cerebellum, and spinal cord may play important roles in the regulation of movement by the PPN region. Diffusion tensor imaging tractography of the PPN region may be used preoperatively to optimize placement of stimulation electrodes and postoperatively it may also be useful to reassess electrode positions.

Original publication




Journal article


Journal of Neurosurgery


Journal of Neurosurgery Publishing Group (JNSPG)

Publication Date





814 - 820