Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractInvolvement of the glutamate system, particularly N-methyl-D-aspartate (NMDA) receptor hypofunction, has long been postulated to be part of the pathophysiology of schizophrenia. An important development is provided by recent data that strongly implicate GRIN2A, the gene encoding the NR2A (GluN2A) NMDA receptor subunit, in the aetiology of the disorder. Rare variants and common variants are both robustly associated with genetic risk for schizophrenia. Some of the rare variants are point mutations likely affecting channel function, but most are predicted to cause protein truncation and thence result, like the common variants, in reduced gene expression. We review the genomic evidence, and the findings from Grin2a mutant mice and other models which give clues as to the likely phenotypic impacts of GRIN2A genetic variation. We suggest that one consequence of NR2A dysfunction is impairment in a form of hippocampal synaptic plasticity, producing deficits in short-term habituation and thence elevated and dysregulated levels of attention, a phenotype of relevance to schizophrenia and its cognitive aspects.

Original publication

DOI

10.1038/s41380-023-02265-y

Type

Journal article

Journal

Molecular Psychiatry

Publisher

Springer Science and Business Media LLC

Publication Date

22/09/2023