Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Canonical transient receptor potential 3 (TRPC3) channel is a non-selective cation permeable channel that plays an essential role in calcium signalling. TRPC3 is highly expressed in the brain and also found in endocrine tissues and smooth muscle cells. The channel is activated directly by binding of diacylglycerol downstream of G-protein coupled receptor activation. In addition, TRPC3 is regulated by endogenous factors including Ca2+ ions, other endogenous lipids, and interacting proteins. The molecular and structural mechanisms underlying activation and regulation of TRPC3 are incompletely understood. Recently, several high-resolution cryogenic electron microscopy structures of TRPC3 and the closely related channel TRPC6 have been resolved in different functional states and in the presence of modulators, coupled with mutagenesis studies and electrophysiological characterisation. Here, we review the recent literature which has advanced our understanding of the complex mechanisms underlying modulation of TRPC3 by both endogenous and exogenous factors. TRPC3 plays an important role in Ca2+ homeostasis and entry into cells throughout the body, and both pathological variants and downstream dysregulation of TRPC3 channels have been associated with a number of diseases. As such, TRPC3 may be a valuable therapeutic target, and understanding its regulatory mechanisms will aid future development of pharmacological modulators of the channel.

Original publication




Journal article



Publication Date





TRP channel, TRPC3 gating, ion channel pharmacology