Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Spinal cord pathology is a major determinant of irreversible disability in progressive multiple sclerosis. The demyelinated lesion is a cardinal feature. The well-characterised anatomy of the spinal cord and new analytic approaches allows the systematic study of lesion topography and its extent of inflammatory activity unveiling new insights into disease pathogenesis. We studied cervical, thoracic, and lumbar spinal cord tissue from 119 pathologically confirmed multiple sclerosis cases. Immunohistochemistry was used to detect demyelination (PLP) and classify lesional inflammatory activity (CD68). Prevalence and distribution of demyelination, staged by lesion activity, was determined and topographical maps were created to identify patterns of lesion prevalence and distribution using mixed models and permutation-based voxelwise analysis. 460 lesions were observed throughout the spinal cord with 76.5% of cases demonstrating at least 1 lesion. The cervical level was preferentially affected by lesions. 58.3% of lesions were inflammatory with 87.9% of cases harbouring at least 1 inflammatory lesion. Topographically, lesions consistently affected the dorsal and lateral columns with relative sparing of subpial areas in a distribution mirroring the vascular network. The presence of spinal cord lesions and the proportion of active lesions related strongly with clinical disease milestones, including time from onset to wheelchair and onset to death. We demonstrate that spinal cord demyelination is common, highly inflammatory, has a predilection for the cervical level, and relates to clinical disability. The topography of lesions in the dorsal and lateral columns and relative sparing of subpial areas points to a role of the vasculature in lesion pathogenesis, suggesting short-range cell infiltration from the blood and signaling molecules circulating in the perivascular space incite lesion development. These findings challenge the notion that end-stage progressive multiple sclerosis is 'burnt out' and an outside-in lesional gradient predominates in the spinal cord. Taken together, this study provides support for long-term targeting of inflammatory demyelination in the spinal cord and nominates vascular dysfunction as a potential target for new therapeutic approaches to limit irreversible disability.

Original publication

DOI

10.1007/s00401-024-02700-6

Type

Journal article

Journal

Acta Neuropathol

Publication Date

09/03/2024

Volume

147

Keywords

Demyelination, Inflammatory activity, Multiple sclerosis, Neuropathology, Spinal cord, Topography, Humans, Multiple Sclerosis, Retrospective Studies, Prevalence, Spinal Cord, Multiple Sclerosis, Chronic Progressive, Magnetic Resonance Imaging