Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neural oscillations are critical to understanding the synchronisation of neural activities and their relevance to neurological disorders. For instance, the amplitude of beta oscillations in the subthalamic nucleus has gained extensive attention, as it has been found to correlate with medication status and the therapeutic effects of continuous deep brain stimulation in people with Parkinson's disease. However, the frequency stability of subthalamic nucleus beta oscillations, which has been suggested to be associated with dopaminergic information in brain states, has not been well explored. Moreover, the administration of medicine can have inverse effects on changes in frequency and amplitude. In this study, we proposed a method based on the stationary wavelet transform to quantify the amplitude and frequency stability of subthalamic nucleus beta oscillations and evaluated the method using simulation and real data for Parkinson's disease patients. The results suggest that the amplitude and frequency stability quantification has enhanced sensitivity in distinguishing pathological conditions in Parkinson's disease patients. Our quantification shows the benefit of combining frequency stability information with amplitude and provides a new potential feedback signal for adaptive deep brain stimulation.

Original publication




Journal article


Neurobiol Dis

Publication Date



Deep brain stimulation, Frequency stability, Neural oscillations, Parkinson's disease, Stationary wavelet transform