Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractChronic kidney disease (CKD) is one of the most serious non‐communicable diseases affecting the population. In the early‐stages patients have no obvious symptoms, until it becomes life‐threatening leading end‐stage kidney failure. Therefore, it is important to early diagnose CKD to allow therapeutic interventions and progression monitoring. Here, a point‐of‐care (POC) sensing platform is reported for the simultaneous detection of three CKD biomarkers, namely creatinine, urea, and human serum albumin (HSA), using reduced graphene oxide/polydopamine‐molecularly imprinted polymer (rGO/PDA‐MIP) fabricated with novel surface‐molecularly imprinting technology. A multi‐channel electrochemical POC readout system with differential pulse voltammetry (DPV) function is developed, allowing the simultaneous detection of the three biomarkers, in combination with the surface‐MIP electrodes. This sensing platform achieves the record low limit‐of‐detection (LoD) at a femtomolar level for all three analytes, with wide detection ranges covering their physiological concentrations. Clinical validation is performed by measuring these analytes in serum and urine from healthy controls and patients with CKD. The average recovery rate is 81.8–119.1% compared to the results obtained from the hospital, while this platform is more cost‐effective, user‐friendly, and requires less sample‐to‐result time, showing the potential to be deployed in resource‐limited settings for the early diagnosis and tracking progression of CKD.

Original publication

DOI

10.1002/adfm.202316865

Type

Journal article

Journal

Advanced Functional Materials

Publisher

Wiley

Publication Date

07/2024

Volume

34