Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background Glioma is the second most common type of brain tumor, accounting for 24% of all brain tumor cases. The current diagnostic procedure is through an invasive tissue sampling to obtain histopathological analysis, however, not all patients are able to undergo a high-risk procedure. Circulating microRNAs (miRNAs) are considered as promising biomarkers for glioma due to their sensitivity, specificity, and non-invasive properties. There is currently no defined miRNA profile that contributes to determining the grade of glioma. This study aims to find the answer for “Is there any significant miRNA that able to distinguish different grades of glioma?”. Methods This study was conducted to compare the expression of miRNAs between low-grade glioma (LGG) and high-grade glioma (HGG). Eighteen blood plasma samples from glioma patients and 6 healthy controls were analyzed for 798 human miRNA profiles using NanoString nCounter Human v3 miRNA Expression Assay. The differential expressions of miRNAs were then analyzed to identify the differences in miRNA expression between LGG and HGG. Results Analyses showed significant expressions in 12 miRNAs between LGG and HGG, where all of them were downregulated. Out of these significant miRNAs, miR-518b, miR-1271-3p, and miR-598-3p showed the highest potential for distinguishing HGG from LGG, with area under curve (AUC) values of 0.912, 0.889, and 0.991, respectively. Conclusion miR-518b, miR-1271-3p, and miR-598-3p demonstrate significant potentials in distinguishing LGG and HGG.

Original publication

DOI

10.12688/f1000research.153731.1

Type

Journal article

Journal

F1000Research

Publisher

F1000 Research Ltd

Publication Date

13/11/2024

Volume

13

Pages

1361 - 1361