Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Brain stimulation has, for many decades, been considered as a potential solution for the unmet needs of the many people living with drug-resistant epilepsy. Clinically, there are several different approaches in use, including vagus nerve stimulation, deep brain stimulation of the thalamus, and responsive neurostimulation. Across populations of patients, all deliver reductions in seizure load and sudden unexpected death in epilepsy risk, yet do so variably, and the improvements seem incremental rather than transformative. In contrast, within the field of experimental neuroscience, the transformational impact of optogenetic stimulation is evident; by providing a means to control subsets of neurons in isolation, it has revolutionized our ability to dissect out the functional relations within neuronal microcircuits. It is worth asking, therefore, how preclinical optogenetics research could advance clinical practice in epilepsy? Here, we review the state of the clinical field, and the recent progress in preclinical animal research. We report various breakthrough results, including the development of new models of seizure initiation, its use for seizure prediction, and for fast, closed-loop control of pathological brain rhythms, and what these experiments tell us about epileptic pathophysiology. Finally, we consider how these preclinical research advances may be translated into clinical practice.

Original publication

DOI

10.1093/brain/awae385

Type

Journal article

Journal

Brain

Publication Date

06/03/2025

Volume

148

Pages

746 - 752

Keywords

brain-machine interface, epilepsy, feedback control, neuromodulation, optogenetics, seizure, Humans, Animals, Deep Brain Stimulation, Epilepsy, Optogenetics, Vagus Nerve Stimulation, Brain, Drug Resistant Epilepsy