Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The hippocampus is critical for memory, imagination and constructive reasoning. Recent models have suggested that its neuronal responses can be well explained by state spaces that model the transitions between experiences. Here we use simulations and hippocampal recordings to reconcile these views. We show that if state spaces are constructed compositionally from existing building blocks, or primitives, hippocampal responses can be interpreted as compositional memories, binding these primitives together. Critically, this enables agents to behave optimally in new environments with no new learning, inferring behavior directly from the composition. We predict a role for hippocampal replay in building and consolidating these compositional memories. We test these predictions in two datasets by showing that replay events from newly discovered landmarks induce and strengthen new remote firing fields. When the landmark is moved, replay builds a new firing field at the same vector to the new location. Together, these findings provide a framework for reasoning about compositional memories and demonstrate that such memories are formed in hippocampal replay.

Original publication

DOI

10.1038/s41593-025-01908-3

Type

Journal article

Journal

Nat Neurosci

Publication Date

10/03/2025