Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

31P-MRS is a method of choice for studying neuroenergetics in vivo, but its application in the mouse brain has been limited, often restricted to ultrahigh field (> 7 T) MRI scanners. Establishing its feasibility on more readily available preclinical 7-T scanners would create new opportunities to study metabolism and physiology in murine models of brain disorders. Here, we demonstrate that the apparent forward rate constant (kf) of creatine kinase (CK) can be accurately quantified using a progressive saturation-transfer approach in the mouse brain at 7 T. We also find that a 20% reduction in respiration of anesthetized mice can lead to 36% increase in kf attributable to a drop in cellular pH and mitochondrial ATP production. To achieve this, we used a test–retest analysis to assess the reliability and repeatability of 31P-MRS acquisition, analysis, and experimental design protocols. We report that many 31P-containing metabolites can be reliably measured using a localized 3D-ISIS sequence, which showed highest SNR amplitude, SNR consistency, and minimal T2 relaxation signal loss. Our study identifies key physiological factors influencing mouse brain energy homeostasis in vivo and provides a methodological basis to guide future studies interested in implementing 31P-MRS on preclinical 7-T scanners.

Original publication

DOI

10.1002/nbm.70055

Type

Journal article

Journal

NMR in Biomedicine

Publication Date

01/06/2025

Volume

38